Feasibility Study for Energy Recovery from Internal Combustion Engine’s Waste Heat

2014 ◽  
Vol 8 (1) ◽  
pp. 223 ◽  
Author(s):  
M. T. Musthafah ◽  
H. Safarudin ◽  
R. A. Bakar ◽  
M. A. Salim ◽  
A. M. Mohd Shafie
2015 ◽  
Vol 799-800 ◽  
pp. 895-901
Author(s):  
Alias Mohd Noor ◽  
Rosnizam Che Puteh ◽  
Srithar Rajoo ◽  
Uday M. Basheer ◽  
Muhammad Hanafi Md Sah ◽  
...  

Exhaust gas heat utilization in the form of Thermal Energy Recovery (TER) has attracted a major interest due to its potentials with Internal Combustion Engines (ICE). Recovering useful energy, for example in the form of electrical power from the engine exhaust waste heat could benefit in the form of direct fuel economy or increase in the available electric power for the auxillary systems. The methodology in this paper includes the assessment of each waste heat recovery technology based on the current research and development trends for automotive application. It also looked into the potential for energy recovery, performances of each technology and factors affecting its implementation. Finally, the work presents an Electric Turbo Compounding (ETC) simulation using a Ford Eco-Boost as a baseline engine modeled with the 1-Dimensional AVL Boost software. A validated 1-D engine model was used to investigate the impact on the Brake Specific Fuel Consumption (BSFC) and Brake Mean Effective Pressure (BMEP) at full load. This paper presents some reviews on the turbo-compounding method and also the modelling efforts and results of an electric turbo-compounding system. Modelling shows that the turbo-compounding setup can be more beneficial than turbo-charging alone.


2020 ◽  
Vol 68 (2) ◽  
pp. 65-71
Author(s):  
Kazushi Sekine ◽  
Kazunori Takagaki ◽  
Masahiro Miyashita ◽  
Takayuki Morioka

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wail Aladayleh ◽  
Ali Alahmer

This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.


Solar Energy ◽  
2005 ◽  
Author(s):  
M. O. Abdullah ◽  
S. L. Leo

An adsorption system driven by solar heat or waste heat can help to eliminate the use of ozone depletion substances, such as chlorofluorocarbons (CFCs) and hydro-chlorofluorocarbons (HCFCs). In recent years, adsorption system has witnessed an increasing interest in many fields due to the fact that this system is quiet, long lasting, cheap to maintain and environmentally benign. Although adsorption system is not commonly used for automobile air conditioning, adsorption-cooled mini-refrigerators have been marketed for recreational transports (motor homes, boats, etc). Hence, there exists a need for a creative design and innovation to allow adsorption technology to be practical for air conditioning in automobile. The objective of this paper is to present a comprehensive review on the past efforts in the field of solar adsorption refrigeration systems and also the feasibility study of this technology for automobile airconditioning purpose. It is a particularly an attractive application for solar energy because of the near coincidence of peak cooling loads with the available of solar power.


2022 ◽  
Vol 305 ◽  
pp. 117719
Author(s):  
Ruihua Chen ◽  
Shuai Deng ◽  
Li Zhao ◽  
Ruikai Zhao ◽  
Weicong Xu

Sign in / Sign up

Export Citation Format

Share Document