Mobile Agent-Based Information Dissemination Scheme Using Location Information in Vehicular Ad Hoc Networks

2016 ◽  
Vol E99.B (9) ◽  
pp. 1958-1966
Author(s):  
Takeshi HASHIMOTO ◽  
Junich AOKI ◽  
Tomoyuki OHTA ◽  
Yoshiaki KAKUDA
Author(s):  
Zhaomin Mo ◽  
Hao Zhu ◽  
Kia Makki ◽  
Niki Pissinou ◽  
Masoumeh Karimi

Vehicular ad-hoc networks (VANETs) have been gained importance for the inter-vehicle communication that supports local communication between vehicles without any expensive infrastructure and considerable configuration efforts. How to provide light-weight and scalable location management service which facilitates geographic routing in VANETs remains a fundamental issue. In this paper we will present a novel peer-to-peer location management protocol, called PLM, to provide location management service in VANETs. PLM makes use of high mobility in VANETs to disseminate vehicles’ historical location information over the network. A vehicle is able to predict current location of other vehicles with Kalman filtering technique. Our theoretical analysis shows that PLM is able to achieve high location information availability with a low protocol overhead and latency. The simulation results indicate that PLM can provide fairly accurate location information with quite low communication overhead in VANETs.. [Article copies are available for purchase from InfoSci-on-Demand.com]


2010 ◽  
pp. 1520-1537
Author(s):  
Zhaomin Mo ◽  
Hao Zhu ◽  
Kia Makki ◽  
Niki Pissinou ◽  
Masoumeh Karimi

Vehicular ad-hoc networks (VANETs) have been gained importance for the inter-vehicle communication that supports local communication between vehicles without any expensive infrastructure and considerable configuration efforts. How to provide light-weight and scalable location management service which facilitates geographic routing in VANETs remains a fundamental issue. In this paper we will present a novel peer-to-peer location management protocol, called PLM, to provide location management service in VANETs. PLM makes use of high mobility in VANETs to disseminate vehicles’ historical location information over the network. A vehicle is able to predict current location of other vehicles with Kalman filtering technique. Our theoretical analysis shows that PLM is able to achieve high location information availability with a low protocol overhead and latency. The simulation results indicate that PLM can provide fairly accurate location information with quite low communication overhead in VANETs


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Kaan Bür ◽  
Maria Kihl

Just as wireless communications develop further to achieve higher performance, new application areas emerge to challenge the limits. Vehicular ad hoc networks are one of these areas, and emergency situation warning is one of their most popular applications since traffic safety is a concern for everyone. Due to the life-critical nature of emergency applications, however, it is extremely important to ensure the solutions proposed meet the standards required, such as reliable and timely delivery of the safety warning in a situation like car collision avoidance. In order to put the candidate solutions to the test and evaluate their feasibility, we adopt the approach of computer simulation. We implement four different selective broadcast algorithms used for information dissemination in vehicular ad hoc networks, and compare their performance under identical realistic simulation conditions. Our goal is to provide an evaluation focussing on the performance with respect to safety, rather than to network aspects like throughput, loss, and delay. We define four new performance criteria to address the effectiveness, efficiency, timeliness, and overhead of the broadcast algorithms in safety warning delivery. The results we obtain using these criteria help us to understand better the design requirements of a high-performance selective broadcast algorithm.


Sign in / Sign up

Export Citation Format

Share Document