Localization of Living-Bodies Using Single-Frequency Multistatic Doppler Radar System

2009 ◽  
Vol E92-B (7) ◽  
pp. 2468-2476 ◽  
Author(s):  
Takashi MIWA ◽  
Shun OGIWARA ◽  
Yoshiki YAMAKOSHI
2013 ◽  
Vol 61 (4) ◽  
pp. 1718-1724 ◽  
Author(s):  
Aditya Singh ◽  
Xiaomeng Gao ◽  
Ehsan Yavari ◽  
Mari Zakrzewski ◽  
Xi Hang Cao ◽  
...  
Keyword(s):  

2002 ◽  
Vol 34 ◽  
pp. 171-176 ◽  
Author(s):  
Kenichi Matsuoka ◽  
Hideo Maeno ◽  
Seiho Uratsuka ◽  
Shuji Fujita ◽  
Teruo Furukawa ◽  
...  

AbstractTo better understand how ice sheets respond to climate, we designed a new multi-frequency ice-penetrating radar system to investigate subsurface structures of ice sheets. The system is mounted on a single platform and handled by a single operator. Three radio frequencies, 30,60 and 179 MHz, were used. An underlying principle of these multi-frequency observations is that the lower frequencies are more sensitive to electrical conductivity changes, whereas the higher frequencies are more sensitive to dielectric permittivity fluctuations in the ice. The system is composed of three single-frequency pulse radars, a trigger-controller unit and a data-acquisition unit. The trigger controller is the key component of this system. It switches transmitters on at different timings to prevent mixing of signals among the three radars. The timing difference was set as 50 μs, which is equivalent to the two-way travel time for radio waves reflecting from 4250m below the surface. A field test was done along a 2000 km long traverse line in east Dronning Maud Land, Antarctica. The multi-frequency system successfully acquired data that are equivalent in quality to our earlier single-frequency measurements along the same traverse line. The details of the system and preliminary data are described.


Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 58 ◽  
Author(s):  
Qiancheng Liang ◽  
Lisheng Xu ◽  
Nan Bao ◽  
Lin Qi ◽  
Jingjing Shi ◽  
...  

With the rapid increase in the development of miniaturized sensors and embedded devices for vital signs monitoring, personal physiological signal monitoring devices are becoming popular. However, physiological monitoring devices which are worn on the body normally affect the daily activities of people. This problem can be avoided by using a non-contact measuring device like the Doppler radar system, which is more convenient, is private compared to video monitoring, infrared monitoring and other non-contact methods. Additionally real-time physiological monitoring with the Doppler radar system can also obtain signal changes caused by motion changes. As a result, the Doppler radar system not only obtains the information of respiratory and cardiac signals, but also obtains information about body movement. The relevant RF technology could eliminate some interference from body motion with a small amplitude. However, the motion recognition method can also be used to classify related body motion signals. In this paper, a vital sign and body movement monitoring system worked at 2.4 GHz was proposed. It can measure various physiological signs of the human body in a non-contact manner. The accuracy of the non-contact physiological signal monitoring system was analyzed. First, the working distance of the system was tested. Then, the algorithm of mining collective motion signal was classified, and the accuracy was 88%, which could be further improved in the system. In addition, the mean absolute error values of heart rate and respiratory rate were 0.8 beats/min and 3.5 beats/min, respectively, and the reliability of the system was verified by comparing the respiratory waveforms with the contact equipment at different distances.


Sign in / Sign up

Export Citation Format

Share Document