Recovery Performance of IHT and HTP Algorithms under General Perturbations

Author(s):  
Xiaobo ZHANG ◽  
Wenbo XU ◽  
Yupeng CUI ◽  
Jiaru LIN
Keyword(s):  
2018 ◽  
Vol 2018 (5) ◽  
pp. 511-516
Author(s):  
Adrian Romero ◽  
Thomas D Johnson ◽  
Leon Downing ◽  
Adrienne Menniti ◽  
William Leaf ◽  
...  

Author(s):  
Shams Kalam ◽  
Rizwan Ahmed Khan ◽  
Shahnawaz Khan ◽  
Muhammad Faizan ◽  
Muhammad Amin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4139
Author(s):  
Yanju Wang ◽  
Zhiyang Lin ◽  
Can Tang ◽  
Wenfeng Hao

The amounts of the components in a microcapsule self-healing system significantly impact the basic performance and self-healing performance of concrete. In this paper, an orthogonal experimental design is used to investigate the healing performance of microcapsule self-healing concrete under different pre-damage loads. The strength recovery performance and sound speed recovery performance under extensive damage are analyzed. The optimum factor combination of the microcapsule self-healing concrete is obtained. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) are carried out on the concrete samples before and after healing to determine the healing mechanism. The results show that the healing effect of self-healing concrete decreases with an increase in the pre-damage load, and the sound speed recovery rate increases with an increase in the damage degree. The influence of the sodium silicate content on the compressive strength and compressive strength recovery rate of the self-healing concrete increases, followed by a decrease. The optimum combination of factors of the microcapsule self-healing system is 3% microcapsules, 30% sodium silicate, and 15% sodium fluosilicate. The results can be used for the design and preparation of self-healing concrete.


Sign in / Sign up

Export Citation Format

Share Document