Postural Control in Young and Elderly Adults When Stance is Challenged: Clinical versus Laboratory Measurements

1993 ◽  
Vol 102 (7) ◽  
pp. 508-517 ◽  
Author(s):  
Neil T. Shepard ◽  
Albert Schultz ◽  
Mian Ju Gu ◽  
Neil B. Alexander ◽  
Thomas Boismier

The use of dynamic posturography (EquiTest) for the characterization of postural control biomechanics would be aided by specific knowledge of what the measured data imply about body segment movements. To investigate this issue, the biomechanics of a group of 15 healthy elderly subjects were compared to those of healthy young subjects by using both dynamic posturography and a laboratory movement and force measuring system. The results from EquiTest were analyzed by 1) routine clinical interpretation of data and 2) a clinical research interpretation by subjecting the EquiTest parameters to additional statistical comparison of mean performance of the young and elderly groups. The young-elderly differences from the 2 EquiTest analyses were then compared to the young-elderly differences derived from the laboratory protocol. The routine clinical interpretation of EquiTest data identified the same increases in sway shown by the laboratory study, but did not reveal the more subtle differences indicated by the laboratory study. When the EquiTest data were subjected to additional statistical analysis, the characterization of difference between young and elderly subjects was the same as that of the laboratory study, with the exception of issues of head versus trunk movement, a measure not made by EquiTest. This essential similarity in the characterization of elderly compared to young subjects by both systems suggests 1) that EquiTest is able to detect subtle differences in biomechanics of postural control between young and elderly healthy adult groups and 2) that implied movements of center of gravity, trunk versus lower limbs, and strength of reaction measures are consistently detected by both EquiTest and the laboratory kinematics and dynamics measurement systems.

1999 ◽  
Vol 9 (3) ◽  
pp. 197-205
Author(s):  
L.L. Borger ◽  
S.L. Whitney ◽  
M.S. Redfern ◽  
J.M. Furman

Postural sway during stance has been found to be sensitive to moving visual scenes in young adults, children, and those with vestibular disease. The effect of visual environments on balance in elderly individuals is relatively unknown. The purpose of this study was to compare postural sway responses of healthy elderly to those of young subjects when both groups were exposed to a moving visual scene. Peak to peak, root mean squared, and mean velocity of the center of pressure were analyzed under conditions combining four moving scene amplitudes ( 2 . 5 ∘ , 5 ∘ , 7 . 5 ∘ , 10 ∘ ) and two frequencies of scene movement (0.1 Hz, 0.25 Hz). Each visual condition was tested with a fixed floor and sway referenced platform. Results showed that elderly subjects swayed more than younger subjects when experiencing a moving visual scene under all conditions. The elderly were affected more than the young by sway referencing the platform. The differences between the two age groups were greater at increased amplitudes of scene movement. These results suggest that elderly are more influenced by dynamic visual information for balance than the young, particularly when cues from the ankles are altered.


1994 ◽  
Vol 87 (3) ◽  
pp. 297-302 ◽  
Author(s):  
G. A. Ford ◽  
O. F. W. James

1. Cardiac chronotropic responses to isoprenaline are reduced with ageing in man. It is unclear whether this is due to reduced cardiac β-adrenergic sensitivity or to age-associated differences in reflex cardiovascular responses to the vasodilatory effects of isoprenaline. Age-associated changes in physical activity are also reported to influence β-adrenergic sensitivity. 2. The aim of the present study was to determine the contribution of alterations in reflex changes in parasympathetic and sympathetic influences and physical fitness to the age-associated reduction in cardiac chronotropic responses to β-adrenergic agonists. 3. The effect of ‘autonomic blockade’ with atropine (40 μg/kg intravenously) and clonidine (4 μg/kg intravenously) on blood pressure, heart rate and chronotropic responses to intravenous bolus isoprenaline doses was determined in eight healthy young (mean age 21 years), nine healthy elderly (72 years) and 10 endurance-trained elderly (69 years) subjects. 4. Elderly subjects had a reduced increase in heart rate after atropine (young, 49 ± 9 beats/min; elderly, 36 ± 5 beats/min; endurance-trained elderly, 34 ± 12 beats/min; P < 0.01) and did not demonstrate the transient increase in systolic blood pressure after clonidine observed in young subjects (young, 11 ± 10 mmHg; elderly, −12 ± 16 mmHg; endurance-trained elderly, −18 ± 11 mmHg; P < 0.01). 5. Cardiac chronotropic sensitivity to isoprenaline after ‘autonomic blockade’ increased in the young but decreased in the elderly subjects. The isoprenaline dose that increased heart rate by 25 beats/min before and after autonomic blockade' was: young, before 1.6 μg, after 2.8 μg, P < 0.01 (geometric mean, paired test); elderly, before 6.9 μg, after 3.6 μg, P < 0.05; endurance-trained elderly, before 5.9 μg, after 4.0 μg, P < 0.05. Cardiac chronotropic sensitivity to isoprenaline was significantly reduced in elderly compared with young subjects before (P < 0.01) but was similar after (P = 0.09) ‘autonomic blockade’. Chronotropic sensitivity did not differ between healthy and endurance-trained elderly subjects before or after ‘autonomic blockade’. 6. The age-associated reduction in cardiac chronotropic responses to bolus isoprenaline is primarily due to an age-related reduction in the influence of reflex cardiovascular responses on heart rate and not to an age-related reduction in cardiac β-adrenergic sensitivity. Endurance training is not associated with altered β-adrenergic chronotropic sensitivity in the elderly. The transient pressor response to intravenously administered clonidine may be lost in ageing man.


2021 ◽  
Author(s):  
Supratim Ray ◽  
Dinavahi V P S Murty ◽  
Wupadrasta Santosh Kumar ◽  
Keerthana Manikandan ◽  
Ranjini Garani Ramesh ◽  
...  

Visual stimulus-induced narrowband gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised in subjects with Mild Cognitive Impairment or Alzheimer′s Disease (AD), suggesting that gamma could be an inexpensive and easily accessible biomarker for early diagnosis of AD. However, to use gamma as a biomarker, its characteristics should remain consistent across multiple recordings, even when separated over long intervals. Previous magnetoencephalography studies in young subjects have reported that gamma power remains consistent over recordings separated by a few weeks to months. Here, we assessed the consistency of slow (20-35 Hz) and fast gamma (36-66 Hz) oscillations induced by static full-field gratings in male (N=20) and female (N=20) elderly subjects (>49 years) in EEG recordings separated by more than a year and tested the consistency in the magnitude of gamma power, its temporal evolution and spectral profile. Gamma oscillations had distinct spectral and temporal characteristics across subjects, which remained consistent across recordings (average intraclass correlation, ICC of ~0.7). Alpha oscillations (8-12 Hz) and steady-state-visually-evoked-potentials (SSVEPs) were also found to be reliable. We further tested how EEG features can be used to identify two recordings as belonging to the same versus different subjects and found high classifier performance (area under ROC curve of ~0.89), with the temporal evolution of slow gamma and spectral profile emerging as the most informative features. These results suggest that EEG gamma oscillations are reliable across recordings and can be used as a clinical biomarker as well as a potential tool for subject identification.


2003 ◽  
Vol 03 (01) ◽  
pp. L83-L89 ◽  
Author(s):  
L. GUZMAN-VARGAS ◽  
E. CALLEJA-QUEVEDO ◽  
F. ANGULO-BROWN

In this work we analyze interbeat cardiac time series arising of three groups: healthy young and healthy elderly subjects and patients with congestive heart failure. We use the fractal dimension method proposed by Higuchi. We find that fractal organization is different for each group. In the case of healthy young subjects only one value of the fractal dimension is necessary to fit the interbeat data, whereas in the cases of healthy elderly and patients with congestive heart failure a crossover behavior in the fractal dimension is present but in opposite directions. By means of a "zoom" on the hinges of the crossover point interesting effects of aging are presented. Finally, we discuss our results in the context of heart interbeat dynamics.


2005 ◽  
Vol 90 (10) ◽  
pp. 5656-5662 ◽  
Author(s):  
Roberta Giordano ◽  
Mario Bo ◽  
Micaela Pellegrino ◽  
Marco Vezzari ◽  
Matteo Baldi ◽  
...  

Context: The hypothalamus-pituitary-adrenal (HPA) axis is mainly regulated by CRH, arginine vasopressin, and glucocorticoid feedback. Hippocampal mineralocorticoid receptors mediate proactive glucocorticoid feedback and mineralocorticoid antagonists, accordingly, stimulate HPA axis. Age-related HPA hyperactivity reflects impaired glucocorticoid feedback at the suprapituitary level. Design: ACTH, cortisol, and dehydroepiandrosterone (DHEA) secretion were studied in eight healthy elderly (75.1 ± 3.2 yr) and eight young (25.0 ± 4.6 yr) subjects during placebo or canrenoate (CAN) administration (200 mg iv bolus followed by 200 mg infused over 4 h). Results: During placebo administration, ACTH and cortisol areas under the curve (AUCs) in elderly subjects were higher than in young subjects (P ≤ 0.01); conversely, DHEA AUCs in elderly subjects were lower than in young subjects (P = 0.002). CAN increased ACTH, cortisol, and DHEA levels in both groups. In young subjects, ACTH, cortisol, and DHEA levels at the end of CAN infusion were higher (P ≤ 0.05) than after placebo. In elderly subjects, at the end of CAN infusion, ACTH, cortisol, and DHEA levels were higher (P = 0.01) than after placebo. Under CAN, ACTH and cortisol AUCs were persistently higher (P ≤ 0.01) and DHEA AUCs lower (P = 0.006) in elderly than in young subjects. Cortisol AUCs after CAN in young subjects did not become significantly different from those in elderly subjects after placebo. Conclusions: 1) Evening-time ACTH and cortisol secretion in elderly subjects is higher than in young subjects; 2) ACTH and cortisol secretion in elderly subjects is enhanced by CAN but less than that in young subjects; and 3) DHEA hyposecretion in elderly subjects is partially restored by mineralocorticoid antagonism. Age-related variations of HPA activity may be determined by some derangement in mineralocorticoid receptors function at the hippocampal level.


2009 ◽  
Vol 30 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Fawzi Boumezbeur ◽  
Graeme F Mason ◽  
Robin A de Graaf ◽  
Kevin L Behar ◽  
Gary W Cline ◽  
...  

A decline in brain function is a characteristic feature of healthy aging; however, little is known about the biologic basis of this phenomenon. To determine whether there are alterations in brain mitochondrial metabolism associated with healthy aging, we combined 13C/1H magnetic resonance spectroscopy with infusions of [1-13C]glucose and [2-13C]acetate to quantitatively characterize rates of neuronal and astroglial tricarboxylic acid cycles, as well as neuroglial glutamate–glutamine cycling, in healthy elderly and young volunteers. Compared with young subjects, neuronal mitochondrial metabolism and glutamate–glutamine cycle flux was ∼30% lower in elderly subjects. The reduction in individual subjects correlated strongly with reductions in N-acetylaspartate and glutamate concentrations consistent with chronic reductions in brain mitochondrial function. In elderly subjects infused with [2-13C]acetate labeling of glutamine, C4 and C3 differed from that of the young subjects, indicating age-related changes in glial mitochondrial metabolism. Taken together, these studies show that healthy aging is associated with reduced neuronal mitochondrial metabolism and altered glial mitochondrial metabolism, which may in part be responsible for declines in brain function.


1998 ◽  
Vol 80 (2) ◽  
pp. 177-182 ◽  
Author(s):  
François Couzy ◽  
Robert Mansourian ◽  
Arielle Labate ◽  
Sylvie Guinchard ◽  
Dirk H. Montagne ◽  
...  

Zn absorption was investigated in healthy elderly subjects aged 71–78 years and in young subjects aged 23–43 years using serum concentration curve (SCC) tests. Both groups had similar Zn and protein status. The increase in serum Zn was monitored for 180 min after ingestion of 200ml of soya milk enriched with 50mg of Zn. Three levels of phytic acid were used: 0g/200ml (totally dephytinized soya milk), 0.13 g/200ml (half dephytinized), and 0.26 g/200ml (natural phytic acid content). In a first study the effect of 0v.0.26 g/200 ml phytic acid was compared in 10 elderly and 10 young subjects, each subject receiving both treatments. In a second study soya milks with 0 and 0.13 g/200ml were tested in nine elderly and ten young subjects, again receiving both treatments. Mean areas under the curve of the SCC tests conducted with the 0 g/200 ml soya milk were found to be the same in both studies. Phytic acid strongly depressed Zn absorption in both studies (P≤ 0.05), but to a greater extent at the 0.26 g/200ml level. No difference was found between the groups of young and elderly subjects. Therefore, no significant effect of aging on Zn absorption, as evaluated by the SCC test, or on the inhibitory effect of phytic acid was detected.


2007 ◽  
Vol 292 (4) ◽  
pp. E1207-E1212 ◽  
Author(s):  
Ann M. Harris ◽  
Lorraine M. Lanningham-Foster ◽  
Shelly K. McCrady ◽  
James A. Levine

The association between free-living daily activity and aging is unclear because nonexercise movement and its energetic equivalent, nonexercise activity thermogenesis, have not been exhaustively studied in the elderly. We wanted to address the hypothesis that free-living nonexercise movement is lower in older individuals compared with younger controls matched for lean body mass. Ten lean, healthy, sedentary elderly and 10 young subjects matched for lean body mass underwent measurements of nonexercise movement and body posture over 10 days using sensitive, validated technology. In addition, energy expenditure was assessed using doubly labeled water and indirect calorimetry. Total nonexercise movement (acceleration arbitrary units), standing time, and standing acceleration were significantly lower in the elderly subjects; this was specifically because the elderly walked less distance per day despite having a similar number of walking bouts per day compared with the young individuals. The energetic cost of basal metabolic rate, thermic effect of food, total daily energy expenditure, and nonexercise activity thermogenesis were not different between the elderly and young groups. Thus, the energetic cost of walking in the elderly may be greater than in the young. Lean, healthy elderly individuals may have a biological drive to be less active than the young.


2002 ◽  
Vol 93 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Richard G. Mynark ◽  
David M. Koceja

The purpose of this study was to determine the ability of the elderly central nervous system to modulate spinal reflex output to functionally decrease a spinally induced balance perturbation. In this case, the soleus H reflex was used as the source of perturbation. Therefore, decreasing (down training) of the soleus H reflex was necessary to counteract this perturbation and to better maintain postural control. In addition to assessing the effect of this perturbation on the H reflex, static postural stability was measured to evaluate possible functional effects. Ten healthy young subjects (age: 27.0 ± 4.6 yr) and 10 healthy elderly subjects (age: 71.4 ± 5.1 yr) participated in this study. Subjects underwent balance perturbation on 2 consecutive days. On day 1 of perturbation, significant down training of the soleus H reflex was demonstrated in both young (−20.4%) and elderly (−18.7%) subjects. On day 2 of perturbation, significant down training of the soleus H reflex was again demonstrated in both young (−24.6%) and elderly (−21.0%) subjects. Analysis of static stability after the 2 days of balance perturbation revealed a significant 10.1% decrease in the area of sway in elderly subjects. In conclusion, this study demonstrated that healthy, elderly subjects compared with young subjects were equally capable of down training the soleus H reflex in response to a balance perturbation. Furthermore, the improvement in static stability through balance training may provide further evidence that balance can be retrained and rehabilitated in subjects with decreased reflex function.


Sign in / Sign up

Export Citation Format

Share Document