scholarly journals Effects of lumbar lordosis assistive support on craniovertebral angle and mechanical properties of the upper trapezius muscle in subjects with forward head posture

2018 ◽  
Vol 30 (3) ◽  
pp. 457-460
Author(s):  
Jong-Hoon Moon ◽  
Jin-Hwa Jung ◽  
Suk-Chan Hahm ◽  
Hwan-Kyung Oh ◽  
Kyoung-Sim Jung ◽  
...  
Author(s):  
Sirirat Kiatkulanusorn ◽  
Bhornluck Paepetch Suato ◽  
Phurichaya Werasirirat

BACKGROUND: There are currently no reports of biomechanical changes in patients with forward head posture (FHP) that result in altered muscle activation throughout various functions with muscle activation response during diverse sleep postures. OBJECTIVE: This study investigated neck and back muscle activity in individuals with and without FHP during a maintained side-sleeping position by incorporating various pillow designs. METHODS: Thirty-four participants (i.e. 17 in each group) were enrolled. The muscle activity was investigated via surface electromyography during the use of three trial pillows: orthopedic pillow, hollow pillow, and Thai neck support pillow. RESULTS: With the application of all three trial pillows the FHP group demonstrated significantly greater lower trapezius muscle activity than the normal head posture group (p< 0.05). Sternocleidomastoid and upper trapezius (UT) muscle activity were similar between the two groups (p> 0.05). Only UT muscle activity was affected by variations in pillow design. In the normal group no difference was observed in the muscle activity between all three pillows (p> 0.05). CONCLUSIONS: Feasibly, the ability to appropriately modify a pillow configuration without creating undesired muscle activation was limited to those exhibiting FHP. Therefore, specially designed pillows or mattresses should be investigated in terms of their relevance to muscle fatigue and potential musculoskeletal pain in FHP patients.


Author(s):  
Ahmad Kamil Solihin ◽  
Endro Yulianto ◽  
Her Gumiwang Ariswati ◽  
K. K. Mujeeb Rahman

The development of technology also affects human health, including body posture due to poor human position when using gadgets, both smartphones, and laptops. This study is design a tool that can measure the elevation of a person's neck angle equipped with electromyography, to help health workers, medical rehabilitation doctors to diagnose and provide treatment to patients with a bent head posture or forward head posture. In this research, an electromyography module is designed which consists of a series of instruments, a pre-amplifier circuit, a high pass filter, a low pass filter, and a dc offset regulator to be converted to digital so that it can be displayed on a laptop. In this study, the tapped muscle was the upper trapezius muscle using disposable electrodes. Meanwhile, to measure the angular elevation, the MPU 6050 sensor is used to measure the movement of the head forward. The frequency of the electromyography signal is 20-500 Hz. For software or display readings from this tool is Delphy. Meanwhile, the microcontroller used for ADC communication is Arduino Uno. From the research, it was found that the neck angle elevation gauge has a 0,597% error rate, for conditioning conducted on respondents, all respondents experienced a decrease in amplitude on the same frequency spectrum in the last ten minutes. Meanwhile, a drastic decrease occurred at the neck angle of 60°. Thus, it can be concluded that the forward position of the head affects the frequency spectrum of the neck muscles.


Work ◽  
2021 ◽  
pp. 1-7
Author(s):  
Samira Molaeifar ◽  
Farzaneh Yazdani ◽  
Amin Kordi Yoosefinejad ◽  
Mohammad Taghi Karimi

BACKGROUND: Forward head posture (FHP) is the most common malposition in the head and neck area. With the growing use of digital devices, the prevalence of FHP may be expected to increase dramatically. Thus far, FHP has been evaluated only in the sagittal plane. OBJECTIVE: The objective of this study was to measure angles and indices from anatomical landmarks in the frontal plane and determine the possible correlations between these variables and craniovertebral angle (CVA) as an index of FHP in the sagittal plane. METHODS: Fifty eight healthy individuals (29 men, 29 women) between 18 and 40 years old participated in this cross-sectional study. Participants were evaluated with an 8-camera motion analysis system. After markers were placed on predetermined landmarks, the participants were asked to maintain their head and neck in the neutral position for 5 seconds. Then participants induced FHP by flexing and lowering their head. The correlation between CVA and a set of angles and indices was calculated at the moment of FHP induction. RESULTS: A moderate correlation was observed between 3-D CVA and the angle formed between the sternum and both tragi for the whole sample and separately in both sexes. A moderate negative correlation was observed between 3-D CVA and height, weight, and BMI in women. A moderate negative correlation was observed between 3-D CVA and height, weight, BMI, and hours on digital devices in men. CONCLUSIONS: Changes in CVA in the sagittal plane can be predicted from changes in the angle formed between the midpoint of the sternum and the left and right tragi in the frontal plane.


Sign in / Sign up

Export Citation Format

Share Document