scholarly journals Relationships between the Swing-phase Knee Flexion Angle and Pre-swing-phase Knee Muscle Activity during Gait Soon after Total Knee Arthroplasty

2019 ◽  
Vol 34 (3) ◽  
pp. 277-282
Author(s):  
Yoshitomo SAIKI ◽  
Kazuki FUJITA ◽  
Naoyuki KUBO ◽  
Tomohiro OJIMA
2005 ◽  
Vol 20 (5) ◽  
pp. 669-673 ◽  
Author(s):  
Tomoyuki Matsumoto ◽  
Nobuhiro Tsumura ◽  
Seiji Kubo ◽  
Ryoichi Shiba ◽  
Masahiro Kurosaka ◽  
...  

2014 ◽  
Vol 29 (4) ◽  
pp. 702-706 ◽  
Author(s):  
Yusuke Nishio ◽  
Tomohiro Onodera ◽  
Yasuhiko Kasahara ◽  
Daisuke Takahashi ◽  
Norimasa Iwasaki ◽  
...  

2018 ◽  
Vol 32 (02) ◽  
pp. 192-195
Author(s):  
Nathan Lenz ◽  
Scott Laster ◽  
Neil Sheth ◽  
Ran Schwarzkopf ◽  
Perry Evangelista

AbstractDespite the overall successful outcomes following primary total knee arthroplasty (TKA) and the concept that a well-balanced TKA yields a more successful result, concerns still remain in the reported literature regarding the patellofemoral joint. Diminished outcomes have been associated with poorly balanced or placed patella implants. The effect of different techniques to achieve flexion–extension balance and the use of posterior stabilized (PS) versus cruciate retaining (CR) implant designs on patellofemoral balancing has not been previously studied. The purpose of this study is to utilize a validated computational analysis software to simulate the effects of varying implant positions and sizes of femoral components. The patellofemoral retinaculum (PFR) load was significantly affected by some conditions, while others did not reach significance. The proximal-distal implant position with knee flexion angle (p < 0.001), the implant size (p < 0.001), and the implant bearing type (CR/PS) (p < 0.05) were significant. For the proximal-distal implant position and knee flexion angle, a more proximal implant position (elevating the joint line) increased the PFR load from 15 to 30°, and a more proximal implant position reduced retinaculum load from 60 to 135°. However, at 45°, implant position does not affect retinaculum load. Achieving the appropriate balance between the dynamic nature of both the tibiofemoral and the patellofemoral interaction in TKA has proven to be complex and challenging to manage. Balancing of a TKA is essential to the proper functioning and overall longevity of the implant. These results demonstrate that patellofemoral balance is affected by implant size and position during flexion–extension gap balancing.


2017 ◽  
Vol 31 (06) ◽  
pp. 568-572 ◽  
Author(s):  
Takanori Iriuchishima ◽  
Keinosuke Ryu

AbstractThe purpose of this study was to compare the rollback ratio in bicruciate substituting (BCS) total knee arthroplasty (TKA) and bicruciate-retaining Oxford unicompartmental knee arthroplasty (UKA). In this study, 64 subjects (64 knees) undergoing BCS-TKA (Journey II: Smith and Nephew) and 50 subjects (50 knees) undergoing Oxford UKA (Zimmer-Biomet holdings, Inc., IN) were included. Approximately 6 months after surgery, and when the subjects had recovered their knee range of motion, following the Laidlow's method, lateral radiographic imaging of the knee was performed with active full knee flexion. The most posterior tibiofemoral contact point was measured for the evaluation of femoral rollback (rollback ratio). Flexion angle was also measured using the same radiograph and the correlation of rollback and flexion angle was analyzed. As a control, radiographs of the asymptomatic contralateral knees of subjects undergoing Oxford UKA were evaluated (50 knees). The rollback ratios of the BCS-TKA, Oxford UKA, and control knees were 37.9 ± 4.9, 35.7 ± 4.2, and 35.3 ± 4.8% respectively. No significant difference in rollback ratio was observed among the three groups. The flexion angles of the BCS-TKA, Oxford UKA, and control knees were 123.8 ± 8.4, 125.4 ± 7.5, and 127 ± 10.3 degrees, respectively. No significant difference in knee flexion angle was observed among the three groups. Significant correlation between rollback ratio and knee flexion angle was observed (p = 0.002; Pearson's correlation coefficient = − 0.384). BCS-TKA showed no significant difference in rollback ratio when compared with control knees and Oxford UKA knees. The BCS-TKA design is likely to reproduce native anterior cruciate ligament and posterior cruciate ligament function, and native knee rollback.


2020 ◽  
Author(s):  
Jing-yang Sun ◽  
Guo-qiang Zhang ◽  
Tie-jian Li ◽  
Jun-min Shen ◽  
Yin-qiao Du ◽  
...  

Abstract Aims There are no methods to assess patient’s squatting ability after TKA (total knee arthroplasty), this study aimed to evaluate the different squatting position of a series of patients who underwent primary TKA.Methods From May 2018 to October 2019, we retrospectively reviewed 154 videos recording the squattin-related motions of patients after TKA. Among the included patients, 119 were women and 35 were men. Their mean age at the index surgery was 61.4 years (range, 30 to 77). The median follow-up was 12 months (range, 6 to 156). We classified those squatting-related motions into three major variations according to squatting depth: half squat, parallel squat, and deep squat. The angle of hip flexion, knee flexion and ankle dorsiflexion were measured in the screenshots captured from the videos at the moment of squatting nadir.Results A total of 26 patients were classified as half squat, 75 as parallel squat, and 53 as deep squat. The angle of hip flexion, knee flexion and ankle dorsiflexion all differed significantly among the three squatting positions (p<0.001). In the parallel squat group, the mean knee flexion angle(°) was 116.5 (SD, 8.1; range, 97 to 137). In the deep squat group, the mean knee flexion angle(°) was 132.5 (SD, 9.3; range, 116 to 158). Among the three squatting positions, deep squat showed the highest hip, knee and ankle flexion angle. And the next was parallel squat.Conclusion Our squatting position classification offers a pragmatic approach to evaluating patient’s squatting ability after TKA. However, the relation between squatting position and daily activity requires further investigation.


2020 ◽  
Vol 11 ◽  
pp. 215145932096648
Author(s):  
Kazunori Koseki ◽  
Hirotaka Mutsuzaki ◽  
Kenichi Yoshikawa ◽  
Yusuke Endo ◽  
Atsushi Kanazawa ◽  
...  

The Honda Walking Assist® (HWA) is a light and easy wearable robot device for gait training, which assists patients’ hip flexion and extension movements to guide hip joint movements during gait. However, the safety and feasibility of gait training with HWA after total knee arthroplasty (TKA) remains unclear. Thus, we aimed to evaluate the safety and feasibility of this gait training intervention using HWA for a patient who underwent TKA. The patient was a 76-year-old female who underwent a left TKA. Gait training using HWA was conducted for 18 sessions in total, from 1 to 5 weeks after TKA. To verify the recovery process after TKA surgery, knee function parameters and walking ability were measured at pre-TKA and 1, 2, 4, and 8 weeks after TKA. The gait patterns at self-selected walking speed (SWS) without HWA at pre- and 5 weeks after TKA were measured by using 3-dimensional (3D) gait analysis. The patient completed a total of 18 gait training interventions with HWA without any adverse complications such as knee pain and skin injury. The postoperative knee extension range of motion (ROM), knee extension torque, SWS, and maximum walking speed were remarkably improved. Regarding gait kinematic parameters, though this patient had a characteristic gait pattern with decreased knee ROM (called stiff knee gait) preoperatively, the knee flexion angle at 5 weeks after TKA showed knee flexion movement at loading response phase (LR; called double knee action), increased knee ROM during gait, and increased knee flexion angle at swing phase. In this case, the gait training using HWA was safe and feasible, and could be effective for the early improvement of gait ability, hip function, and gait pattern after TKA.


2021 ◽  
pp. 1-11
Author(s):  
Yoshitomo Saiki ◽  
Tomohiro Ojima ◽  
Tamon Kabata ◽  
Naoyuki Kubo ◽  
Seigaku Hayashi ◽  
...  

2018 ◽  
Vol 32 (02) ◽  
pp. 146-152 ◽  
Author(s):  
Wei Wang ◽  
Bin Yue ◽  
JianHua Wang ◽  
Hany Bedair ◽  
Harry Rubash ◽  
...  

Inconsistent data has been reported on the effect of the femoral posterior condyle offset (PCO) on the maximal knee flexion after total knee arthroplasty (TKA). This study investigated the relationship between the postoperative changes of the PCO and the changes of maximal knee flexion after a cruciate retaining (CR) TKA. Nine patients with medial osteoarthritis (OA) in one knee were investigated. Before operation, each index knee was magnetic resonance imaging (MRI) scanned for construction of a three-dimensional (3D) knee model. The patient then performed a maximal weight-bearing (WB) flexion and the index knee flexion was measured using a dual fluoroscopy technique. At an average of 8 months after a CR TKA, all patients performed the same WB knee flexion. The postoperative changes of the PCO, the posterior cruciate ligament (PCL) elongation, and the posterior tibial slope (PTS) were determined. The postoperative changes of maximal knee flexion were determined by comparing with the preoperative maximal flexion angles of the knee. The correlations of the postoperative changes of PCO and PTS with the postoperative changes of the maximal flexion angle and PCL elongation of the knee were analyzed. The preoperative PCO (28.5 ± 4.5 mm) was significantly smaller than the postoperative PCO (31.1 ± 5.1 mm) (p < 0.05). The increasing of PCO after surgery is correlated with the decreasing of maximal knee flexion angle (r = 0.74) and the increasing of PCL elongation (r = 0.64) after the TKA. The PTS was not found to change significantly after the TKA and was not significantly correlated to the maximal knee flexion angle and PCL elongation. The postoperative increases of the PCO were shown to cause overstretching of the PCL and poor flexion angle of the knee after the CR TKA. Restoration of PCO could help optimize the maximal flexion of the knee after the TKA with consideration about PCL tension.


Sign in / Sign up

Export Citation Format

Share Document