swing phase
Recently Published Documents


TOTAL DOCUMENTS

476
(FIVE YEARS 95)

H-INDEX

48
(FIVE YEARS 4)

Author(s):  
Ashutosh Tiwari ◽  
Abhijeet Kujur ◽  
Jyoti Kumar ◽  
Deepak Joshi

Abstract Transfemoral amputee often encounters reduced toe clearance resulting in trip-related falls. Swing phase joint angles have been shown to influence the toe clearance therefore, training intervention that targets shaping the swing phase joint angles can potentially enhance toe clearance. The focus of this study was to investigate the effect of the shift in the location of the center of pressure (CoP) during heel strike on modulation of the swing phase joint angles in able-bodied participants (n=6) and transfemoral amputees (n=3). We first developed a real-time CoP-based visual feedback system such that participants could shift the CoP during treadmill walking. Next, the kinematic data were collected during two different walking sessions- baseline (without feedback) and feedback (shifting the CoP anteriorly/posteriorly at heel strike to match the target CoP location). Primary swing phase joint angle adaptations were observed with feedback such that during the mid-swing phase, posterior CoP shift feedback significantly increases (p<0.05) the average hip and knee flexion angle by 11.55 degrees and 11.86 degrees respectively in amputees, whereas a significant increase (p<0.05) in ankle dorsiflexion, hip and knee flexion angle by 3.60 degrees, 3.22 degrees, and 1.27 degrees respectively compared to baseline was observed in able-bodied participants. Moreover, an opposite kinematic adaptation was seen during anterior CoP shift feedback. Overall, results confirm a direct correlation between the CoP shift and the modulation in the swing phase lower limb joint angles.


2021 ◽  
Vol 13 ◽  
Author(s):  
Linhui Ni ◽  
Wen Lv ◽  
Di Sun ◽  
Yi Sun ◽  
Yu Sun ◽  
...  

Given the limited power of neuropsychological tests, there is a need for a simple, reliable means, such as gait, to identify mild dementia and its subtypes. However, gait characteristics of patients with post-stroke dementia (PSD) and Alzheimer’s disease (AD) are unclear. We sought to describe their gait signatures and to explore gait parameters distinguishing PSD from post-stroke non-dementia (PSND) and patients with AD. We divided 3-month post-stroke patients into PSND and PSD groups based on the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and the activity of daily living (ADL). Thirty-one patients with AD and thirty-two healthy controls (HCs) were also recruited. Ten gait parameters in one single and two dual-task gait tests (counting-backward or naming-animals while walking) were compared among the groups, with adjustment for baseline demographic covariates and the MMSE score. The area under the receiver operating characteristic curve (AUC) was used to identify parameters discriminating PSD from individuals with PSND and AD. Patients with PSD and patients with AD showed impaired stride length, velocity, stride time, and cadence while patients with PSD had altered stance and swing phase proportions (all p ≤ 0.01, post hoc). Patients with AD had smaller toe-off (ToA) and heel-to-ground angles (HtA) (p ≤ 0.01) than HCs in dual-task gait tests. Individuals with PSD had a shorter stride length, slower velocity, and altered stance and swing phase percentages in all tests (p ≤ 0.01), but a higher coefficient of variation of stride length (CoVSL) and time (CoVST) only in the naming animals-task gait test (p ≤ 0.001) than individuals with PSND. ToA and HtA in the naming animals-task gait test were smaller in individuals with AD than those with PSD (p ≤ 0.01). Statistical significance persisted after adjusting for demographic covariates, but not for MMSE. The pace and the percentage of stance or swing phase in all tests, CoVST in the dual-task paradigm, and CoVSL only in the naming animals-task gait test (moderate accuracy, AUC > 0.700, p ≤ 0.01) could distinguish PSD from PSND. Furthermore, the ToA and HtA in the naming animals-task gait paradigm discriminated AD from PSD (moderate accuracy, AUC > 0.700, p ≤ 0.01). Thus, specific gait characteristics could allow early identification of PSD and may allow non-invasive discrimination between PSD and AD, or even other subtypes of dementia.


2021 ◽  
Vol 11 (11) ◽  
pp. 1498
Author(s):  
Jessica P. McCabe ◽  
Kristen Roenigk ◽  
Janis J. Daly

Background/Problem: Standard neurorehabilitation and gait training has not proved effective in restoring normal gait coordination for many stroke survivors. Rather, persistent gait dyscoordination occurs, with associated poor function, and progressively deteriorating quality of life. One difficulty is the array of symptoms exhibited by stroke survivors with gait deficits. Some researchers have addressed lower limb weakness following stroke with exercises designed to strengthen muscles, with the expectation of improving gait. However, gait dyscoordination in many stroke survivors appears to result from more than straightforward muscle weakness. Purpose: Thus, the purpose of this case study is to report results of long-duration gait coordination training in an individual with initial good strength, but poor gait swing phase hip/knee and ankle coordination. Methods: Mr. X was enrolled at >6 months after a left hemisphere ischemic stroke. Gait deficits included a ‘stiff-legged gait’ characterized by the absence of hip and knee flexion during right mid-swing, despite the fact that he showed good initial strength in right lower limb quadriceps, hamstrings, and ankle dorsiflexors. Treatment was provided 4 times/week for 1.5 h, for 12 weeks. The combined treatment included the following: motor learning exercises designed for coordination training of the lower limb; functional electrical stimulation (FES) assisted practice; weight-supported coordination practice; and over-ground and treadmill walking. The FES was used as an adjunct to enhance muscle response during motor learning and prior to volitional recovery of motor control. Weight-supported treadmill training was administered to titrate weight and pressure applied at the joints and to the plantar foot surface during stance phase and pre-swing phase of the involved limb. Later in the protocol, treadmill training was administered to improve speed of movement during the gait cycle. Response to treatment was assessed through an array of impairment, functional mobility, and life role participation measures. Results: At post-treatment, Mr. X exhibited some recovery of hip, knee, and ankle coordination during swing phase according to kinematic measures, and the stiff-legged gait was resolved. Muscle strength measures remained essentially constant throughout the study. The modified Ashworth scale showed improved knee extensor tone from baseline of 1 to normal (0) at post-treatment. Gait coordination overall improved by 12 points according to the Gait Assessment and Intervention Tool, Six Minute Walk Test improved by 532′, and the Stroke Impact Scale improved by 12 points, including changes in daily activities; mobility; and meaningful activities. Discussion: Through the combined use of motor learning exercises, FES, weight-support, and treadmill training, coordination of the right lower limb improved sufficiently to exhibit a more normal swing phase, reducing the probability of falls, and subsequent downwardly spiraling dysfunction. The recovery of lower limb coordination during swing phase illustrates what is possible when strength is sufficient and when coordination training is targeted in a carefully titrated, highly incrementalized manner. Conclusions/Contribution to the Field: This case study contributes to the literature in several ways: (1) illustrates combined interventions for gait training and response to treatment; (2) provides supporting case evidence of relationships among knee flexion coordination, swing phase coordination, functional mobility, and quality of life; (3) illustrates that strength is necessary, but not sufficient to restore coordinated gait swing phase after stroke in some stroke survivors; and (4) provides details regarding coordination training and progression of gait training treatment for stroke survivors.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1222
Author(s):  
Yuta Matsuzawa ◽  
Takasuke Miyazaki ◽  
Yasufumi Takeshita ◽  
Naoto Higashi ◽  
Hiroyuki Hayashi ◽  
...  

Background and Objectives: Leg extension angle is important for increasing the propulsion force during gait and is a meaningful indicator for evaluating gait quality in stroke patients. Although leg extension angle during late stance might potentially also affect lower limb kinematics during the swing phase, the relationship between these two remains unclear. This study aimed to investigate the relationship between leg extension angle and knee flexion angle during pre-swing and swing phase in post-stroke gait. Materials and Methods: Twenty-nine stroke patients walked along a 16 m walkway at a self-selected speed. Tilt angles and acceleration of pelvis and paretic lower limb segments were measured using inertial measurement units. Leg extension angle, consisting of a line connecting the hip joint with the ankle joint, hip and knee angles, and increments of velocity during pre-swing and swing phase were calculated. Correlation analysis was conducted to examine the relationships between these parameters. Partial correlation analysis adjusted by the Fugl-Meyer assessment-lower limb (FMA-LL) was also performed. Results: On the paretic side, leg extension angle was positively correlated with knee flexion angle during the swing phase (r = 0.721, p < 0.001) and knee flexion angle and increments of velocity during the pre-swing phase (r = 0.740–0.846, p < 0.001). Partial correlation analysis adjusted by the FMA-LL showed significant correlation between leg extension angle and knee flexion angle during the swing phase (r = 0.602, p = 0.001) and knee flexion angle and increments of velocity during the pre-swing phase (r = 0.655–0.886, p < 0.001). Conclusions: Leg extension angle affected kinematics during the swing phase in post-stroke gait regardless of the severity of paralysis, and was similar during the pre-swing phase. These results would guide the development of effective gait training programs that enable a safe and efficient gait for stroke patients.


Author(s):  
Irina N. Beloozerova

Thalamic stroke leads to ataxia if the cerebellum-receiving ventrolateral thalamus (VL) is affected. The compensation mechanisms for this deficit are not well understood, particularly the roles that single neurons and specific neuronal subpopulations outside the thalamus play in recovery. The goal of this study was to clarify neuronal mechanisms of the motor cortex involved in mitigation of ataxia during locomotion when part of the VL is inactivated or lesioned. In freely ambulating cats, we recorded the activity of neurons in layer V of the motor cortex as the cats walked on a flat surface and horizontally placed ladder. We first reversibly inactivated approximately 10% of the VL unilaterally using glutamatergic transmission antagonist CNQX and analyzed how the activity of motor cortex reorganized to support successful locomotion. We next lesioned 50-75% of the VL bilaterally using kainic acid and analyzed how the activity of motor cortex reorganized when locomotion recovered. When a small part of the VL was inactivated, the discharge rates of motor cortex neurons decreased, but otherwise the activity was near normal, and the cats walked fairly well. Individual neurons retained their ability to respond to the demand for accuracy during ladder locomotion; however, most changed their response. When the VL was lesioned, the cat walked normally on the flat surface but was ataxic on the ladder for several days post-lesion. When ladder locomotion normalized, neuronal discharge rates on the ladder were normal, and the shoulder-related group was preferentially active during the stride's swing phase.


2021 ◽  
Author(s):  
Sylvia Ounpuu ◽  
Kristan Pierz ◽  
Erin Garibay ◽  
Gyula Acsadi ◽  
Tishya Wren

Author(s):  
Vyacheslav Lyashenko ◽  
M. Ayaz Ahmad ◽  
Nataliya Belova ◽  
Svitlana Sotnik

In this review, we would like to present some of the most interesting modern designs of walking robots: bipedal, quadropedal, hexopedal, and octopods. Their advantages and disadvantages are highlighted. It has been determined that structures with eight or more limbs are ineffective due to high level of electricity consumption. The use of more than six number of legs does not give noticeable advantages in profile cross-country ability or maneuverability, however, it allows to reduce the forces and moments of inertia forces due to decrease in mode coefficient (ratio of time spent by propulsor in support to time of entire step), and, consequently, smoother leg movements in swing phase.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5983
Author(s):  
Kristina Daunoraviciene ◽  
Jurgita Ziziene ◽  
Jolanta Pauk ◽  
Giedre Juskeniene ◽  
Juozas Raistenskis

The purpose of this study was to examine the changes in muscular activity between the left and right lower legs during gait in healthy children throughout temporal parameters of EMG and symmetry index (SI). A total of 17 healthy children (age: 8.06 ± 1.92 years) participated in this study. Five muscles on both legs were examined via the Vicon 8-camera motion analysis system synchronized with a Trigno EMG Wireless system and a Bertec force plate; onset–offset intervals were analyzed. The highest occurrence frequency of the primary activation modality was found in the stance phase. In the swing phase, onset–offset showed only a few meaningful signs of side asymmetry. The knee flexors demonstrated significant differences between the sides (p < 0.05) in terms of onset–offset intervals: biceps femoris in stance, single support, and pre-swing phases, with SI values = −6.45%, −14.29%, and −17.14%, respectively; semitendinosus in single support phase, with SI = −12.90%; lateral gastrocnemius in swing phase, with SI = −13.33%; and medial gastrocnemius in stance and single support phases, with SI = −13.33% and −23.53%, respectively. The study outcomes supply information about intra-subject variability, which is very important in follow-up examinations and comparison with other target groups of children.


Sign in / Sign up

Export Citation Format

Share Document