scholarly journals Combining abilities analysis for ear rot resistance in popcorn hybrids development

Revista CERES ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 61-70
Author(s):  
Rafael Nunes de Almeida ◽  
Marcelo Vivas ◽  
Divino Rosa dos Santos Junior ◽  
Júlio Cesar Gradice Saluci ◽  
Mayara Cazadini Carlos ◽  
...  
Keyword(s):  
Ear Rot ◽  
1975 ◽  
Vol 41 (2) ◽  
pp. 527-533
Author(s):  
P. W. Grapevine ◽  
J. S. Brinks ◽  
G. V. Richardson

2021 ◽  
Vol 22 (5) ◽  
pp. 2435
Author(s):  
Marzia Beccaccioli ◽  
Manuel Salustri ◽  
Valeria Scala ◽  
Matteo Ludovici ◽  
Andrea Cacciotti ◽  
...  

Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.


1995 ◽  
Vol 3 (5) ◽  
pp. 383-388 ◽  
Author(s):  
Françoise Cossette ◽  
J. David Miller

1994 ◽  
Vol 57 (6) ◽  
pp. 514-521 ◽  
Author(s):  
CHARLES W. BACON ◽  
PAUL E. NELSON

The fungi Fusarium moniliforme Sheldon and Fusarium proliferatum (Matsushima) Nirenberg produce a series of toxins on corn which include the fumonisins of which fumonisin B1 and B2 are considered to have cancer promoting activity. Both fungi produce similar ratios of the fumonisins B1 to B2. Other mycotoxins produced include moniliformin, fusarin C and fusaric acid. Fumonisin B1 has been shown to be responsible for most of the toxicological affects observed from ingesting corn infected by toxigenic isolates of these fungi. The distribution of the two fungi is generally similar, although F. proliferatum is isolated more frequently from sorghum than corn. They occur worldwide on other food crops, such as rice, sorghum, millet, several fruits and vegetables. Both fungi are ear rot pathogens of corn, thus, mycotoxin production occurs under field conditions, although it also may occur in storage. One or both fungi may have a frequency of occurrence of 90% or higher in corn; 90% of the F. moniliforme isolates produce the fumonisins. On corn and corn products the range of concentrations reported is 0.3 to 330 μg/g of corn-based product. These concentrations include both corn-based animal feed and human foods.


Author(s):  
A. Sivanesan

Abstract A description is provided for Cochliobolus pallescens. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Common on many graminicolous and non-graminicolous hosts. Important cereals and grasses include Eleusine, Hordeum, Oryza, Panicum, Paspalum, Pennisetum, Poa, Saccharum, Setaria, Sorghum, Triticum and Zea economically important dicot hosts include Allium (59, 4867), Arachis (53, 1647), Brassica (66, 3075), Canna, Calendula, Calotropis (44, 1832; 66, 3587), Carica (61, 5129), Cinnamomum, Citrus (68, 843), Coriandrum, Dahlia, Fagopyrum (64, 2425), Gaillardia, Hevea (56, 1257; 67, 5560), Musa (54, 4051), Solanum (50, 3484). DISEASE: Leaf spots of cereals, black point of wheat (44, 102), leaf spot and on stems of rubber (56, 1257; 67, 5560), ear rot of barley (62, 1005), rot of garlic (59, 4867). GEOGRAPHICAL DISTRIBUTION: Australia, Bangladesh, Brunei, Burma, Canada, Colombia, Cuba, Denmark, Egypt, Ethiopia, Fiji, Ghana, Guinea, Hong Kong, India, Indonesia, Iran, Jamaica, Japan, Kenya, Malaysia, Malawi, Nepal, Nigeria, Pakistan, Papua New Guinea, Peru, Philippines, Sierra Leone, Singapore, Solomon Islands, Somalia, Sri Lanka, Swaziland, Sudan, Taiwan, Tanzania, Thailand, Trinidad, USA, USSR, Venezuela, Windward Islands, Zambia, Zimbabwe. TRANSMISSION: By wind-borne conidia and seed-borne.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1885-1891 ◽  
Author(s):  
Grażyna M Fedorowicz ◽  
James D Fry ◽  
Robert R H Anholt ◽  
Trudy F C Mackay

Abstract Odor-guided behavior is a polygenic trait determined by the concerted expression of multiple loci. Previously, P-element mutagenesis was used to identify single P[lArB] insertions, in a common isogenic background, with homozygous effects on olfactory behavior. Here, we have crossed 12 lines with these smell impaired (smi) mutations in a half-diallel design (excluding homozygous parental genotypes and reciprocal crosses) to produce all possible 66 doubly heterozygous hybrids with P[lArB] insertions at two distinct locations. The olfactory behavior of the transheterozygous progeny was measured using an assay that quantified the avoidance response to the repellent odorant benzaldehyde. There was significant variation in general combining abilities of avoidance scores among the smi mutants, indicating variation in heterozygous effects. Further, there was significant variation among specific combining abilities of each cross, indicating dependencies of heterozygous effects on the smi locus genotypes, i.e., epistasis. Significant epistatic interactions were identified for nine transheterozygote genotypes, involving 10 of the 12 smi loci. Eight of these loci form an interacting ensemble of genes that modulate expression of the behavioral phenotype. These observations illustrate the power of quantitative genetic analyses to detect subtle phenotypic effects and point to an extensive network of epistatic interactions among genes in the olfactory subgenome.


2021 ◽  
Vol 46 (4) ◽  
Author(s):  
José Luis Arispe-Vázquez ◽  
Luis Alberto Aguirre-Uribe ◽  
Epifanio Castro-Del Ángel ◽  
Yisa María Ochoa-Fuentes ◽  
Ernesto Cerna-Chávez ◽  
...  

2011 ◽  
Vol 60 (232) ◽  
pp. 953-963 ◽  
Author(s):  
A.O. Adebambo ◽  
C.O.N. Ikeobi ◽  
M.O. Ozoje ◽  
O.O. Oduguwa ◽  
A. Adebambo Olufunmilayo

Sign in / Sign up

Export Citation Format

Share Document