Epistatic Interactions Between smell-impaired Loci in Drosophila melanogaster

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1885-1891 ◽  
Author(s):  
Grażyna M Fedorowicz ◽  
James D Fry ◽  
Robert R H Anholt ◽  
Trudy F C Mackay

Abstract Odor-guided behavior is a polygenic trait determined by the concerted expression of multiple loci. Previously, P-element mutagenesis was used to identify single P[lArB] insertions, in a common isogenic background, with homozygous effects on olfactory behavior. Here, we have crossed 12 lines with these smell impaired (smi) mutations in a half-diallel design (excluding homozygous parental genotypes and reciprocal crosses) to produce all possible 66 doubly heterozygous hybrids with P[lArB] insertions at two distinct locations. The olfactory behavior of the transheterozygous progeny was measured using an assay that quantified the avoidance response to the repellent odorant benzaldehyde. There was significant variation in general combining abilities of avoidance scores among the smi mutants, indicating variation in heterozygous effects. Further, there was significant variation among specific combining abilities of each cross, indicating dependencies of heterozygous effects on the smi locus genotypes, i.e., epistasis. Significant epistatic interactions were identified for nine transheterozygote genotypes, involving 10 of the 12 smi loci. Eight of these loci form an interacting ensemble of genes that modulate expression of the behavioral phenotype. These observations illustrate the power of quantitative genetic analyses to detect subtle phenotypic effects and point to an extensive network of epistatic interactions among genes in the olfactory subgenome.

1995 ◽  
Vol 70 (2) ◽  
pp. 211-221
Author(s):  
Hiroshi MATSUBAYASHI ◽  
Masatoshi TOMARU ◽  
Masami SAWA ◽  
Maki NONAKA ◽  
Yuzuru OGUMA

1995 ◽  
Vol 70 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Hiroshi MATSUBAYASHI ◽  
Masatoshi TOMARU ◽  
Masami SAWA ◽  
Maki NONAKA ◽  
Yuzuru OGUMA

Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 293-301 ◽  
Author(s):  
Robert R H Anholt ◽  
Richard F Lyman ◽  
Trudy F C Mackay

Abstract Single P-element (P[lArB]) insertional mutagenesis of an isogenic strain was used to identify autosomal loci affecting odor-guided behavior of Drosophila melanogaster. The avoidance response to benzaldehyde of 379 homozygous P[lArB] element-containing insert lines was evaluated quantitatively. Fourteen smell impaired (smi) lines were identified in which P[lArB] element insertion caused different degrees of hyposmia in one or both sexes. The smi loci map to different cytological locations and probably are novel olfactory genes. Enhancer trap analysis of the smi lines indicates that expression of at least 10 smi genes is controlled by olfactory tissue-specific promoter/enhancer elements.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 269-282
Author(s):  
Toshiyuki Takano-Shimizu

Abstract Interspecific cross is a powerful means to uncover hidden within- and between-species variation in populations. One example is a bristle loss phenotype of hybrids between Drosophila melanogaster and D. simulans, although both the pure species have exactly the same pattern of bristle formation on the notum. There exists a large amount of genetic variability in the simulans populations with respect to the number of missing bristles in hybrids, and the variation is largely attributable to simulans X chromosomes. Using nine molecular markers, I screened the simulans X chromosome for genetic factors that were responsible for the differences between a pair of simulans lines with high (H) and low (L) missing bristle numbers. Together with duplication-rescue experiments, a single major quantitative locus was mapped to a 13F–14F region. Importantly, this region accounted for most of the differences between H and L lines in three other independent pairs, suggesting segregation of H and L alleles at the single locus in different populations. Moreover, a deficiency screening uncovered several regions with factors that potentially cause the hybrid bristle loss due to epistatic interactions with the other factors.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
D Smith ◽  
J Wohlgemuth ◽  
B R Calvi ◽  
I Franklin ◽  
W M Gelbart

Abstract P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Armin Schmidt ◽  
Gioacchino Palumbo ◽  
Maria P Bozzetti ◽  
Patrizia Tritto ◽  
Sergio Pimpinelli ◽  
...  

Abstract The sting mutation, caused by a P element inserted into polytene region 32D, was isolated by a screen for male sterile insertions in Drosophila melanogaster. This sterility is correlated with the presence of crystals in spermatocytes and spermatids that are structurally indistinguishable from those produced in males carrying a deficiency of the Y-linked crystal (cry) locus. In addition, their morphology is needle-like in Ste+ flies and star-shaped in Ste flies, once again as observed in cry– males. The sti mutation leads to meiotic drive of the sex chromosomes, and the strength of the phenomenon is correlated with the copy number of the repetitive Ste locus. The same correlation is also true for the penetrance of the male sterile mutation. A presumptive sti null allele results in male sterility and lethal maternal effect. The gene was cloned and shown to code for a putative protein that is 866 amino acids long. A C-terminal domain of 82 amino acids is identified that is well conserved in proteins from different organisms. The gene is expressed only in the germline of both sexes. The interaction of sting with the Ste locus can also be demonstrated at the molecular level. While an unprocessed 8-kb Ste primary transcript is expressed in wild-type males, in X/Y homozygous sti males, as in X/Y cry– males, a 0.7-kb mRNA is produced.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1623-1637 ◽  
Author(s):  
Kenneth W Dobie ◽  
Cameron D Kennedy ◽  
Vivienne M Velasco ◽  
Tory L McGrath ◽  
Juliani Weko ◽  
...  

Abstract Faithful chromosome inheritance is a fundamental biological activity and errors contribute to birth defects and cancer progression. We have performed a P-element screen in Drosophila melanogaster with the aim of identifying novel candidate genes involved in inheritance. We used a “sensitized” minichromosome substrate (J21A) to screen ∼3,000 new P-element lines for dominant effects on chromosome inheritance and recovered 78 Sensitized chromosome inheritance modifiers (Scim). Of these, 69 decreased minichromosome inheritance while 9 increased minichromosome inheritance. Fourteen mutations are lethal or semilethal when homozygous and all exhibit dramatic mitotic defects. Inverse PCR combined with genomic analyses identified P insertions within or close to genes with previously described inheritance functions, including wings apart-like (wapl), centrosomin (cnn), and pavarotti (pav). Further, lethal insertions in replication factor complex 4 (rfc4) and GTPase-activating protein 1 (Gap1) exhibit specific mitotic chromosome defects, discovering previously unknown roles for these proteins in chromosome inheritance. The majority of the lines represent mutations in previously uncharacterized loci, many of which have human homologs, and we anticipate that this collection will provide a rich source of mutations in new genes required for chromosome inheritance in metazoans.


Sign in / Sign up

Export Citation Format

Share Document