scholarly journals Assessment of bovine biomaterials containing bone morphogenetic proteins bound to absorbable hydroxyapatite in rabbit segmental bone defects

2006 ◽  
Vol 21 (6) ◽  
pp. 366-373 ◽  
Author(s):  
Evelyn Hasegawa Gonçalves Caporali ◽  
Sheila Canevese Rahal ◽  
José Morceli ◽  
Rumio Taga ◽  
José Mauro Granjeiro ◽  
...  

PURPOSE: To evaluate the osteo-regenerative capacity of two proprietary bone grafting materials, using a segmental defect model in both radial diaphyses of rabbits. METHODS: The right defect was filled with pooled bone morphogenetic proteins (pBMPs) bound to absorbable ultrathin powdered hydroxyapatite (HA) mixed with inorganic and demineralized bone matrix and bone-derived collagen, derived from bovine bone (Group A). The left defect was filled with bovine demineralized bone matrix and pBMPs bound to absorbable ultrathin powdered HA (Group B). In both groups, an absorbable membrane of demineralized bovine cortical was used to retain the biomaterials in the bone defects, and to guide the tissue regeneration. The rabbits were euthanized 30, 90 and 150 days after surgery. Radiographic, tomographic and histologic evaluations were carried out on all specimens. RESULTS: At 30 days, the demineralized cortical bone cover was totally resorbed in both groups. HA was totally resorbed from Group A defects, whereas HA persisted in Group B defects. A prominent foreign body reaction was evident with both products, more pronounced in sections from Group B. At 90 days, the defects in Group B exhibited more new bone than Group A. However, at 150 days after surgery, neither treatment had stimulated complete repair of the defect. CONCLUSION: The partial bone healing of the segmental defect occurred with low or none performance of the biomaterials tested.

2006 ◽  
Vol 24 (7) ◽  
pp. 1454-1462 ◽  
Author(s):  
Yanchun Liu ◽  
Shama Ahmad ◽  
Xiao Zheng Shu ◽  
R. Kent Sanders ◽  
Sally Anne Kopesec ◽  
...  

Spine ◽  
2006 ◽  
Vol 31 (12) ◽  
pp. 1299-1306 ◽  
Author(s):  
Hyun W. Bae ◽  
Li Zhao ◽  
Linda E. A. Kanim ◽  
Pamela Wong ◽  
Rick B. Delamarter ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 53-68
Author(s):  
S.A. Audisio ◽  
◽  
P.G. Vaquero ◽  
E.C. Verna ◽  
A.L. Cristofolini ◽  
...  

2019 ◽  
Author(s):  
Woo-Yong Lee ◽  
Young-Mo Kim ◽  
Hyun-Dae Shin ◽  
Deuk-Soo Hwang ◽  
Yong-Bum Joo ◽  
...  

Abstract Background The purpose of this study was to compare the histologic outcomes after rotator cuff (RC) repair between with demineralized bone matrix (DBM) augmentation and without DBM and to evaluate the role of DBM for tendon-to-bone (TB) healing in a rabbit model. Methods Twenty-six adult male New Zealand white rabbits were randomly allocated to the control group (n = 13) or the DBM group (n = 13). A chronic RC tear was generated on the right shoulder of all rabbits. In the control group, RC repair was achieved by a standard transosseous technique. In the DBM group, RC repair was achieved using the same technique, and DBM was interposed between the cuff and bone. After 8 weeks, the RC tendon entheses from all rabbits were processed for gross and histologic examination. Results In the control group, the tendon midsubstance was disorganized with randomly and loosely arranged collagen fibers and rounded fibroblastic nuclei. The TB interface was predominantly fibrous with small regions of fibrocartilage, especially mineralized fibrocartilage. In the DBM group, the tendon midsubstance appeared normal and comprised densely arranged collagen fibers, with orientated crimped collagen fibers running in the longitudinal direction of the tendon. These fibers were interspersed with elongated fibroblast nuclei. The TB interface consisted of organized collagen fibers with large quantities of fibrocartilage and mineralized fibrocartilage. Conclusion DBM augmentation at the RC-to-bone interface enhances TB healing after RC repair.


2020 ◽  
Author(s):  
Soyon Kim ◽  
Jiabing Fan ◽  
Chung-Sung Lee ◽  
Chen Chen ◽  
Ksenia Bubukina ◽  
...  

Abstract Background: Demineralized bone matrix (DBM), an allograft bone processed to better expose osteoinductive factors such as bone morphogenetic proteins (BMPs), is increasingly used for clinical bone repair. However, more extensive use of DBM is limited by its unpredictable osteoinductivity and low bone formation capacity. Commercial DBM products often employ polymeric carriers to enhance handling properties but such carriers generally do not possess bioactive functions. Heparin is a highly sulfated polysaccharide and is shown to form a stable complex with growth factors to enhance their bioactivities. In this study, a new heparinized synthetic carrier for DBM is developed based on photocrosslinking of methacrylated glycol chitosan and heparin conjugation. Results: Heparinized chitosan exerts protective effects on BMP bioactivity against physiological stressors related to bone fracture healing. It also enhances the potency of BMPs by inhibiting the activity of BMP antagonist, noggin. Moreover, heparinized chitosan is effective to deliver bone marrow stromal cells and DBM for enhanced osteogenesis by sequestering and localizing the cell-produced or DBM-released BMPs. Conclusions: This research suggests an essential approach of developing a new hydrogel carrier to stabilize the bioactivity of BMPs and improve the clinical efficacy of current bone graft therapeutics for accelerated bone repair.


Sign in / Sign up

Export Citation Format

Share Document