scholarly journals A distributed measurement system to estimate plant water content in agricultural fields based on wireless sensor networks

Author(s):  
João C. Giacomin ◽  
Flávio H. Vasconcelos ◽  
Elson J. Silva

This paper proposes a distributed measuring system based on wireless sensor networks (WSN) employed to estimate vegetation water content in agricultural fields. A WSN deployed along the whole field permits to measure and map soil, air and plant variables and transmit these data, by small radios, to a central computer. Water content is obtained by measuring the attenuation of the network communication signals (RF), without the use of any specific sensor. The need of distributed measurements to estimate agricultural crop parameters is pointed out. A mathematical model of radio wave propagation through vegetation is used to develop the method of estimating vegetation water content with a RSSF. Field tests confirmed the viability of the proposal.

2010 ◽  
Vol 9 (4) ◽  
pp. 1002-1013 ◽  
Author(s):  
H.R. Bogena ◽  
M. Herbst ◽  
J.A. Huisman ◽  
U. Rosenbaum ◽  
A. Weuthen ◽  
...  

2020 ◽  
Author(s):  
Paul Vermunt ◽  
Susan Steele-Dunne ◽  
Saeed Khabbazan ◽  
Jasmeet Judge ◽  
Leila Guerriero

<p>Radar observations of vegetated surfaces are highly affected by water in the soil and canopy. Consequently, radar has been used to monitor surface soil moisture for decades now. In addition, radar has been proven a useful tool for monitoring agricultural crop growth and development and forest fuel load estimation, as a result of the sensitivity of backscatter to vegetation water content (VWC). These current applications are based on satellite revisit periods of days to weeks. However, with future satellite constellations and geosynchronous radar missions, such as ESA’s Earth Explorer candidate mission HydroTerra, we will be able to monitor soil and vegetation multiple times per day. This opens up opportunities for new applications.</p><p>Examples could be (1) early detection of water stress in vegetation through anomalies in daily cycles of VWC, and (2) spatio-temporal estimations of rainfall interception, an important part of the water balance. However, currently, we lack the knowledge to physically understand sub-daily patterns in backscatter. Hence, the aim of our research is to understand the effect of water-related factors on sub-daily patterns of radar backscatter of a growing corn canopy.</p><p>Two intensive field campaigns were conducted in Florida (2018) and The Netherlands (2019). During both campaigns, soil moisture, external canopy water (dew, interception), soil water potential, and weather conditions were monitored every 15 minutes for the entire growing season. In addition, regular destructive sampling was performed to measure seasonal and sub-daily variations of vegetation water content. In Florida, hourly field scans were made with a truck-mounted polarimetric L-band scatterometer. In The Netherlands, these measurements were extended with X- and C-band frequencies.</p><p>Here, results will be presented from both campaigns. Different periods in the growing season will be highlighted. In particular, we will elaborate on the effects of variations in internal and external canopy water, and soil moisture on diurnal backscatter patterns.</p>


Sign in / Sign up

Export Citation Format

Share Document