scholarly journals Epidermólise bolhosa distrófica recessiva mitis: relato de caso clínico

2005 ◽  
Vol 80 (5) ◽  
pp. 503-508
Author(s):  
Thaiz Gava Rigoni Gürtler ◽  
Lucia Martins Diniz ◽  
João Basilio de Souza Filho
Keyword(s):  

As epidermólises bolhosas são dermatoses bolhosas congênitas que levam à formação de bolhas espontaneamente ou após trauma. São reconhecidos três grupos de da doença, de acordo com o segundo consenso internacional: simples, juncional e distrófica. Nas formas distróficas, o defeito genético deve-se à mutação no gene COL7A1, responsável pela codificação do colágeno VII, principal constituinte das fibrilas de ancoragem, que participam na aderência da lâmina densa à derme. Os autores relatam o caso de paciente do sexo feminino, de 15 anos, apresentando ulcerações nas pernas, bolhas serosas e lesões atrófico-acastanhadas nos braços e tronco. Foram observadas distrofias ungueais e alterações dentárias, iniciadas a partir do nascimento. O exame histopatológico da bolha revelou quadro compatével com epidermólise bolhosa, que, associado aos dados clínicos, permitiram a classificação do caso na forma distrófica recessiva mitis.

Author(s):  
K. A. Holbrook

The dermal-epidermal junction (DEJ), or basement membrane rone, is the boundary between the epithelial and mesenchymal compartments of the skin; epidermal and fibroblastic cells in these two regions collaborate to synthesire its components. Ultrastructural studies (TEM and SEM) have defined a series of planes or layers (basal epidermal, lamina lucida, lamina densa, sublamina densa) and the morphology and density of attachment structures (hemidesmosomes, anchoring filaments, anchoring fibrils and anchoring plaques) in this region of normal skin. Change in structure of the DEJ provides information about the history of the tissue; reduplication of the lamina densa, for example, indicates a site of cell detachment or migration, or remodelling that accompanies repair of focal damage. In normal skin the structure of the DEJ is stable; in pathologic conditions it can be compromised by the congenital absence of certain structures or antigens (e.g., in the inherited disorders, epidermolysis bullosa [EB]) or by enzymatic degradation (e.g., in tumor invasion). Dissolution of the DEJ can also occur normally during the formation of epidermal appendages (e.g., hair follicles) and as melanocytes and Langerhans cells migrate into the epidermis during development.Biochemical and immunohisto/cytochemical studies have identified more than 20 molecules at the DEJ. These include well known matrix molecules (e.g., types IV and V collagen, laminin and fibronectin) and skin-specific antigens. The latter have been identified by autoantibodies or specific polyclonal or monoclonal antibodies raised against the skin, cultured cells and other epithelia. Some of the molecules of the DEJ are are present in basement membrane zones of many epithelia and thus are considered ubiquitous components (type IV, V, laminin, fibronectin, nidogen, entactin, HSPG, LDA-1, CSP [3B3]). All of them (that have been investigated in developing skin) appear ontogenetically as early as human embryonic tissue can be obtained and their expression is typically normal in patients with EB. The known properties of many of these molecules (particularly the matrix components) suggest functions they might impart to the DEJ: support of an epithelium (type IV collagen), regulation of permeability (heparan sulfate proteoglycan) or facilitation of cell attachment (fibronectin) and movement (laminin). Another group of matrix components and antigens of the DEJ includes molecules that are skin-specific or characteristic of stratified squamous epithelia (type VII collagen=LH 7:2 antigen, bullous pemphigoid antigen, AA3, GB3, KF-1,19-DEJ-1, epidermolysis bullosa acquisita antigen [EBA], AF-1 and AF-2, cicatricial pemphigoid antigen [CPA]) . These molecules are expressed in the DEJ later in development than the first group of molecules, in conjunction with the morphologic appearance of the structure they represent. Their appearance is also coordinated with specific developmental events (e.g., epidermal stratification) and the expression of molecules of differentiation in the epidermis and dermis. One or more of them is typically absent or reduced in expression in the skin of patients with heritable disorders affecting this region. There is no apparent correlation between the location of molecules in the DEJ and the stability of their expression.


2020 ◽  
Author(s):  
Keyword(s):  

1986 ◽  
Vol 34 (7) ◽  
pp. 847-853 ◽  
Author(s):  
D R Abrahamson

Ultrastructural distribution of laminin within renal glomerular (GBM) and tubular basement membranes (TBM) was investigated using post-embedding immunolocalization with colloidal gold. Rat kidneys were fixed with 4% formaldehyde and embedded at 4 degrees C in Lowicryl K4M medium. Thin sections were then sequentially treated with affinity-purified rabbit anti-laminin IgG and anti-rabbit IgG conjugated to 10 nm diameter colloidal gold. Gold bound specifically to the GBM and TBM with particle densities of 690/micron2 and 731/micron2, respectively. In the GBM, the number of gold particles bound/micron2 of lamina densa greater than lamina rara externa greater than lamina rara interna. Closely similar binding patterns were found when kidneys were fixed with 0.5% glutaraldehyde plus 3% formaldehyde and embedded at 60 degrees C in L.R. White resin, but slightly less gold bound to sections overall than that seen with formaldehyde alone and Lowicryl. Taken together, these results illustrate that anti-laminin IgG, whether applied to fixed sections in vitro or introduced in vivo, bound to the lamina rara interna, lamina densa, and lamina rara externa of the GBM and throughout the TBM.


1983 ◽  
Vol 97 (3) ◽  
pp. 849-857 ◽  
Author(s):  
I K Gipson ◽  
S M Grill ◽  
S J Spurr ◽  
S J Brennan

Intact, viable sheets of adult rabbit corneal epithelium, 9 mm in diameter, were prepared by the Dispase II method (Gipson, I. K., and S. M. Grill, 1982, Invest. Ophthalmol. Vis. Sci. 23:269-273). The sheets, freed of the basal lamina, retained their desmosomes and stratified epithelial characteristics, but lacked hemidesmosomes (HD). Epithelial sheets were placed on fresh segments of corneal stroma with denuded basal laminae and incubated in serum-free media for 1, 3, 6, 18, or 24 h. Tissue was processed for electron microscopy, and the number of HD/micron membrane, the number of HDs with anchoring fibrils directly across the lamina densa from them, and the number of anchoring fibrils not associated with HDs were counted. After 6 h in culture, the number of newly formed HD was 82% of controls (normal rabbit corneas), and by 24 h the number had reached 95% of controls. At all time periods studied, 80-86% of HDs had anchoring fibrils directly across the lamina densa from them. Anchoring fibrils not associated with HDs decreased with culture time. These data indicate that the sites where anchoring fibrils insert into the lamina densa may be nucleation sites for new HD formation. Corneal epithelial sheets placed on two other ocular basal laminae, Descemet's membrane and lens capsule, had not formed HDs after 24 h in culture. These two laminae do not have anchoring fibrils associated with them. Rabbit epithelial sheets placed on the denuded epithelial basal lamina of rat and human corneas formed new HDs. Thus, at least in these mammalian species, HD formation may involve some of the same molecular components.


2002 ◽  
Vol 77 (5) ◽  
pp. 519-532 ◽  
Author(s):  
Hiram Larangeira de Almeida Jr
Keyword(s):  

O estudo das alterações moleculares das epidermólises bolhosas tem contribuído para que se compreenda melhor essas enfermidades. Na epidermólise bolhosa simples a maioria dos casos está associada com alteração nas citoqueratinas basais 5 (gen KRT5) e 14 (gen KRT14), o que modifica o citoesqueleto na camada basal da epiderme, levando à degeneração dessa camada, formando bolha intra-epidérmica. Mutações na plectina (gen PLEC1), componente da placa interna do hemidesmossoma, levam também à clivagem intra-epidérmica. Na epidermólise bolhosa juncional vários gens estão envolvidos, em decorrência da complexidade da zona da membrana basal, todos levando ao descolamento dos queratinócitos basais na lâmina lúcida, pela disfunção da aderência entre esses e a lâmina densa. Alterações na laminina 5 (gens LAMA3, LAMB3 e LAMC2), integrina alfa6beta4 (gens ITGA6 e ITGB4) e colágeno XVII (gen COL17A1) foram descritas. Por fim, na epidermólise bolhosa distrófica apenas um gen está mutado, alterando o colágeno VII (gen COL7A1), principal componente das fibrilas ancorantes, produzindo clivagem abaixo da lâmina densa, variando fenotipicamente de acordo com a conseqüência da mutação. Outra aplicação importante dessas informações refere-se ao diagnóstico pré-natal, com a perspectiva no futuro da terapia gênica.


1998 ◽  
Vol 17 (8-9) ◽  
pp. 603-613 ◽  
Author(s):  
Makoto Tsunenaga ◽  
Eijiro Adachi ◽  
Satoshi Amano ◽  
Robert E. Burgeson ◽  
Toshio Nishiyama

1981 ◽  
Vol 91 (2) ◽  
pp. 427-437 ◽  
Author(s):  
C A Vaccaro ◽  
J S Brody

The ultrastructural characteristics of alveolar (ABM) and capillary (CBM) basement membranes in the adult rat lung have been defined using tannic acid fixation, ruthenium red staining, or incubation in guanidine HCl. ABM is dense and amorphous, has 3- to 5-nm filaments in the lamina rara externa (facing the alveolus) that run between the lamina densa and the basal cell surface of the epithelium, has an orderly array of ruthenium red-positive anionic sites that appear predominantly (79%) on the lamina rara externa, and has discontinuities beneath alveolar type II cells but not type I cells that allow penetration of type II cytoplasmic processes into the interstitium of the alveolar wall. The CBM is fibrillar and less compact than ABM, has no lamina rara filaments, and has one fifth the number of ruthenium red-positive anionic sites of ABM that appear predominantly (64%) overlying the lamina densa. Incubation of lung tissue with Flavobacterium heparinum enzyme or with chondroitinase has shown that ABM anionic sites represent heparan sulfate proteoglycans, whereas CBM anionic sites contain this and other sulfated proteoglycans. The CBM fuses in a local fashion with ABM, compartmentalizing the alveolar wall into a thick and thin side and establishing a thin, single, basement-membrane gas-exchange surface between alveolar air, and capillary blood. The potential implications of ABM and CBM ultrastructure for permeability, cell differentiation, and repair and morphogenesis of the lung are discussed.


Sign in / Sign up

Export Citation Format

Share Document