scholarly journals Dynamics of allochthonous organic matter in a tropical Brazilian headstream

2006 ◽  
Vol 49 (6) ◽  
pp. 967-973 ◽  
Author(s):  
José Francisco Gonçalves Júnior ◽  
Juliana Silva França ◽  
Marcos Callisto

The species composition of the riparian vegetation and the seasonal contribution of input and storage of fine and coarse particulate organic matter were assessed in a 3rd order stretch. Fourteen tree species in the riparian zone were identified, with 3 species contributing with 68% of total litter input: Miconia chartacea Triana (43%), Miconia cyathanthera Triana (16%) and Erythroxylum pelletarianum St. Hil (9%). The allochthonous input of coarse particulate organic matter (CPOM) was composed mainly by leaves (over 50%). Species composition and the contribution of each plant species biomass for vertical, lateral and soil inputs and benthic stocks varied along the study period. The maximum values found in September, November and December coincided with the beginning of the rainy season. There were no differences between the allochthonous vertical and lateral inputs of CPOM to the stream. Differently to other studies, this result was probably due to the peculiar composition of stream’s riparian vegetation at Serra do Cipó.

1988 ◽  
Vol 45 (4) ◽  
pp. 655-665 ◽  
Author(s):  
Martin E. Gurtz ◽  
G. Richard Marzolf ◽  
Keith T. Killingbeck ◽  
David L. Smith ◽  
J. Vaun McArthur

The hydrologic regime and zonation of riparian vegetation influenced the quantity and quality of coarse particulate organic matter (CPOM; >1 mm) stored in the channel and upper bank of a prairie stream. In a 5.4-km intermittent reach of the South Branch of Kings Creek on Konza Prairie, Kansas, total annual import was lowest in headwater reaches and increased downstream. Total storage of benthic CPOM in the dry channel and on the bank before the flow period was highest in the fourth- and fifth-order gallery forest zone (999 g ash-free dry mass∙m−2) and less in upstream reaches (320–341 g∙m−2). These longitudinal patterns of CPOM annual import and storage (before the flow period) were opposite those predicted by the river continuum concept for streams draining forested regions. Following flow, headwater channels had more CPOM (291 g∙m−2) than downstream reaches. On the bank, storage was always highest in downstream reaches. Composition of CPOM both in the channel and on the bank varied with changes in riparian vegetation; grass tissues dominated in headwater channels, while wood and leaves of trees and shrubs were more abundant downstream. During the flow period, storage of CPOM increased only in headwater channels, where retention was high despite the lack of woody debris. In this intermittent prairie stream, benthic CPOM may not contribute consistently to the terrestrial/aquatic linkages that are suggested in the river continuum concept because of (1) a paucity of large CPOM sources (e.g. trees, shrubs) in the upper reaches and (2) a hydrologic regime that reduces the amount, as well as the predictability, of stored CPOM. The biota of prairie streams must have opportunistic food gathering and reproductive strategies to take advantage of variable food resources in a flow environment that is itself very unpredictable.


2020 ◽  
Vol 77 (8) ◽  
pp. 1393-1408
Author(s):  
David A. Tavernini ◽  
John S. Richardson

Tributary junctions are regarded as ecologically important due to unique habitat present; however, there is limited understanding of the drivers of habitat attributes at these locations. Using six sites across two mainstem rivers, we tested whether tributary size relative to main stem governs the strength and direction of response of substrate size, stream temperature, and nutrient and coarse particulate organic matter (CPOM) concentration. We found that only phosphorus and CPOM concentration showed a significant relationship with relative tributary size. Small tributaries contributed high concentrations, whereas concentrations in larger tributaries resembled the main stem. Often, tributary exports were enough to increase the resource concentration in the main stem by 40%. Substrate coarsened by ∼60% downstream of tributaries. Temperature asynchrony was observed, where tributaries contributed water between 2.8 °C cooler to 1.9 °C warmer than the main stem within one diel period. Our results highlight the importance of small tributaries for whole network functioning. However, large spatiotemporal variability revealed how habitat attributes are highly context-dependent in these locations and may be difficult to predict in both scientific and management settings.


2012 ◽  
Vol 48 (3) ◽  
pp. 303-313 ◽  
Author(s):  
Julien Cornut ◽  
Arnaud Elger ◽  
Axel Greugny ◽  
Maelys Bonnet ◽  
Eric Chauvet

Sign in / Sign up

Export Citation Format

Share Document