scholarly journals Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium

2007 ◽  
Vol 50 (3) ◽  
pp. 379-384 ◽  
Author(s):  
Janice Valmorbida ◽  
Carmen Sílvia Fernandes Boaro

The influence of potassium on the development of Mentha piperita L. was evaluated in the plants grown in nutritive solution modified by variations in potassium, at 6.0, 3.0, and 1.5 mmol L-1, establishing differences between treatments and corresponding, respectively, to the concentration proposed in Hoagland and Arnon's no. 2 solution and reductions by 50% and 75%. Until 21 days after transplanting, the concentration used was diluted to 50% in the three treatments. Evaluations consisted of leaf area, development of the above-ground part, and dry matter of different plant organs. Plants grown with 1.5/3.0 mmol L-1 K showed greater development of the above-ground part. Other variables were not different among plants in the different treatments.

1991 ◽  
Vol 116 (3) ◽  
pp. 544-551 ◽  
Author(s):  
I.J. Warrington ◽  
R.A. Norton

Plants of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura], radish (Raphanus sativus L.), corn (Zea mays L.), and cucumber (Cucumis sativus L.) were grown under 8-, 12-, 18- or 24-hour daylengths and at three photosynthetic photon fluxes (PPF) within each daylength to evaluate growth and development responses to daily quantum integral (PPF × duration). For the same daily quantum integral, dry matter accumulation and leaf area development were less under 24-hour than under 18-hour daylengths with chrysanthemum and radish. With corn and cucumber, these values were similar under 12-, 18-, and 24-hour daylengths. In all of the species, leaf area and dry matter development were lowest under the 8-hour daylength. Continuous (24-hour) daylength produced some growth abnormalities in radish and chrysanthemum. Specific leaf weight in all species and flower node count in cucumber were linearly related to daily quantum integral up to the highest values examined (73.5 mol·day-1·m-2). All species showed expected photoperiod responses with respect to flowering, but the rate of floral development and number of flower buds formed were highest under the highest PPF (and highest daily quantum integral) treatments. The results indicate that field phenotypes can be obtained in controlled environment (CE) conditions, providing the field daylength and daily quantum integral conditions are reproduced.


1974 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
B. A. C. Enyi

SUMMARYApplication of dimecron to cowpea plants increased grain yield, its effect being more pronounced in widely spaced plants and those planted in March. Dimecron increased grain yield by encouraging greater leaf area development, by increasing the number of flowering inflorescences and the number of pods set per inflorescence, and by decreasing the number of shrivelled pods. March planting encouraged greater dry matter production than January and May planting. Dimecron application decreased the number of Ootheca beningseni, reduced the proportion of leaf damaged by these insects, and reduced the number of plants infested with aphids and Acidodis larvae.


1995 ◽  
Vol 46 (1) ◽  
pp. 99 ◽  
Author(s):  
F Giunta ◽  
R Motzo ◽  
M Deidda

A field experiment was carried out in Sardinia (Italy) on durum wheat to analyse the effects of different moisture treatments, irrigated (I), rainfed (R) and stressed (S), on leaf area index (LAI), radiation intercepted (Q) and water use (WU), efficiency of conversion of radiation and water into dry matter (RUE and WUE), nitrogen uptake and carbon and nitrogen partitioning in the above-ground part of the plant. In the period between beginning of stem elongation and heading, drought affected the maximum LA1 in the most stressed treatment (4.7 in S v. about 6.9 in R and I), but not Q and WU. RUE was also lowered by drought in this period (0.68 in S v. about 0.95 g MJ-1 in R and I) as a reduced biomass was recorded in S at heading (528gm-2 in S v. 777 g m-2 on average in R and I). In contrast with the previous period, the reduction in LA1 between heading and maximum ear weight (MEW) determined a significant reduction in Q and WU, WUE and RUE, resulting, ultimately, in notable differences in the total biomass produced until MEW (1203, 930 and 546 gm-2 in I, R and S respectively). The amount of stem reserves relocated to the grain decreased as the level of stress increased, going from 223gm-2 in I to 9gm-2 in S and was accumulated almost entirely (from 76% of the total in I to 100% in S), in the post-heading period. Nitrogen percentage was not affected by the treatments applied apart from the higher values in stem and flag leaf in S later in the growing season due to an inhibition of nitrogen translocation in S. The total nitrogen uptake was lower in S (12.3gm-2) than in I (16.6gm-2) only as a consequence of the different dry matter accumulation patterns. The importance of WUE in this type of Mediterranean environment is discussed, with particular concern to the key role of modulation of leaf area development through the growing season.


2007 ◽  
Vol 58 (5) ◽  
pp. 385 ◽  
Author(s):  
María Gómez-del-Campo

Two-year-old olive trees cv. Cornicabra, trained in a central leader form for hedgerow planting, were grown outdoors in 45-L weighing lysimeters to evaluate the effect of water supply on growth and development. Four treatments were established and maintained for 155 days during spring–autumn. Treatment T100 was irrigated to maintain the potting medium close to water-holding capacity by progressive replenishment of consumption that was measured at weekly intervals by weighing and recording drainage. Treatments T80, T60, and T40 received 80, 60, and 40%, respectively, of the water applied to T100. For these treatments, transpiration and leaf area were measured every fortnight. Dry matter in roots, stems, and leaves was measured at the beginning and end of the experiment. Leaf conductance was measured at 09 : 00 and 12 : 00 solar time every fortnight and at c. 2-hourly intervals throughout one day each month. Over the experimental period, T100 produced 0.42 ± 0.01 m2 leaf area, 319.6 ± 60.4 g dry biomass, and transpired 77.5 ± 1.1 L water. Water stress significantly reduced leaf area development and dry matter production (P < 0.05) in T60 and T40, but not in T80. There was no effect on dry matter partitioning to the various organs of the trees or the roots/aerial part ratio. Leaf conductance was more sensitive to water stress than vegetative growth, with significant differences (P < 0.05) established among treatments 3 weeks before differences were observed in transpiration. In autumn, transpiration and leaf conductance increased in all treatments independently of soil water status. Over the experiment, transpiration efficiency (TE, g/L) increased with reduced water supply, with a significant difference (P < 0.10) between T100 and both T60 and T40. The study has established that maximum growth of young olive plants can be achieved, without effect on the distribution of biomass between organs, at water supply less than that required to support maximum transpiration.


2001 ◽  
Vol 69 (2) ◽  
pp. 163-172 ◽  
Author(s):  
R. Ranganathan ◽  
Y.S. Chauhan ◽  
D.J. Flower ◽  
M.J. Robertson ◽  
C. Sanetra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document