Leaf area development and dry matter production of newly grafted monoaxis and biaxis apple trees

2016 ◽  
pp. 335-340 ◽  
Author(s):  
B.M. van Hooijdonk ◽  
D.S. Tustin ◽  
M.J. Oliver ◽  
G.A. Dayatilake
1974 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
B. A. C. Enyi

SUMMARYApplication of dimecron to cowpea plants increased grain yield, its effect being more pronounced in widely spaced plants and those planted in March. Dimecron increased grain yield by encouraging greater leaf area development, by increasing the number of flowering inflorescences and the number of pods set per inflorescence, and by decreasing the number of shrivelled pods. March planting encouraged greater dry matter production than January and May planting. Dimecron application decreased the number of Ootheca beningseni, reduced the proportion of leaf damaged by these insects, and reduced the number of plants infested with aphids and Acidodis larvae.


2007 ◽  
Vol 58 (5) ◽  
pp. 385 ◽  
Author(s):  
María Gómez-del-Campo

Two-year-old olive trees cv. Cornicabra, trained in a central leader form for hedgerow planting, were grown outdoors in 45-L weighing lysimeters to evaluate the effect of water supply on growth and development. Four treatments were established and maintained for 155 days during spring–autumn. Treatment T100 was irrigated to maintain the potting medium close to water-holding capacity by progressive replenishment of consumption that was measured at weekly intervals by weighing and recording drainage. Treatments T80, T60, and T40 received 80, 60, and 40%, respectively, of the water applied to T100. For these treatments, transpiration and leaf area were measured every fortnight. Dry matter in roots, stems, and leaves was measured at the beginning and end of the experiment. Leaf conductance was measured at 09 : 00 and 12 : 00 solar time every fortnight and at c. 2-hourly intervals throughout one day each month. Over the experimental period, T100 produced 0.42 ± 0.01 m2 leaf area, 319.6 ± 60.4 g dry biomass, and transpired 77.5 ± 1.1 L water. Water stress significantly reduced leaf area development and dry matter production (P < 0.05) in T60 and T40, but not in T80. There was no effect on dry matter partitioning to the various organs of the trees or the roots/aerial part ratio. Leaf conductance was more sensitive to water stress than vegetative growth, with significant differences (P < 0.05) established among treatments 3 weeks before differences were observed in transpiration. In autumn, transpiration and leaf conductance increased in all treatments independently of soil water status. Over the experiment, transpiration efficiency (TE, g/L) increased with reduced water supply, with a significant difference (P < 0.10) between T100 and both T60 and T40. The study has established that maximum growth of young olive plants can be achieved, without effect on the distribution of biomass between organs, at water supply less than that required to support maximum transpiration.


2010 ◽  
Vol 39 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Marcio Mahmoud Megda ◽  
Francisco Antonio Monteiro

The objective of this work was to study morphogenic characteristics, and dry matter production of roots and shoots of marandu palisadegrass (Brachiaria brizantha cv. Marandu) submitted to combinations of nitrogen and potassium, in a nutritive solution, employing silica as substrate. The experiment was carried out in a greenhouse during the summer. It was used a 5² fractionated factorial scheme with 13 combinations of nitrogen and potassium, which were distributed in a randomized block design, with four replications. The nitrogen × potassium interaction was significant for the number of tillers and leaves, for leaf area, for shoots and root section dry mass, for total length and surface and specific length and surface in the roots. Production of aerial part dry mass positively correlated with the number of tillers and leaves and grass leaf area. Nitrogen rates modulated the root system development, and the root specific length and surface decreased when high rates of nitrogen and potassium were supllied. Nitrogen and potassium influence Marandu palisadegrass morphogenic characteristics, which are determinant for grass dry matter production.


1980 ◽  
Vol 31 (6) ◽  
pp. 1103 ◽  
Author(s):  
WC Morgan ◽  
DG Parbery

As well as reducing dry matter production of lucerne, infection of 15 % of the leaf area by Pseucbpeziza medicaginis reduced digestibility by 14% and crude protein content by 16%. Infection caused oestrogenic activity in green lucerne.


1982 ◽  
Vol 22 (115) ◽  
pp. 76 ◽  
Author(s):  
KA Boundy ◽  
TG Reeves ◽  
HD Brooke

The effect of serial planting on dry matter production, leaf area, grain yield and yield components cf Lupinus angustifoiius (cvv. Uniwhite, Uniharvest and Unicrop) and L. albus (cv. Ultra) was investigated in field plots at Rutherglen in 1973 and 1974. Delayed planting reduced dry matter production of all cultivars, and leaf area for Ultra. Differences in dry matter partitioning were observed between the late flowering Uniharvest, and the early flowering Unicrop and Ultra. In Uniharvest, delayed plantings resulted in a greater proportion of total dry matter being produced during the flowering phase, whereas the reverse was true for Unicrop and Ultra. The later flowering cultivars showed marked grain yield and yield component reduction with later sowing. Yields were reduced by 160.6 kg/ha and 222.5 kg/ha for each week's delay in sowing Uniharvest and Uniwhite, respectively. This effect was offset in the early flowering cultivars by greater development of lateral branches. In addition, when Unicrop and Ultra were planted in April, pod and flower abortion on the main stem resulted from low temperatures at flowering time. Optimum sowing time was early April for Uniwhite and Uniharvest, and early May for Unicrop and Ultra. Excellent vegetative growth under ideal moisture conditions highlighted the poor harvest indices of lupins and the scope for genetic improvement in the genus.


1967 ◽  
Vol 45 (11) ◽  
pp. 2063-2072 ◽  
Author(s):  
Holger Brix

Seedlings of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) were grown in growth chambers under all combinations of three temperatures (13, 18, and 24 °C) and three light intensities (450, 1000, and 1800 ft-c). Dry matter production of leaves, stem, and roots was determined at 65 and 100 days after germination. The leaf area produced per unit of leaf dry weight and the dry matter distribution to the plant organs was measured. Net assimilation rates between the ages of 65 and 100 days were calculated. Rates of photosynthesis per unit of leaf were determined at different light intensities and temperatures, and rates of respiration of plant top and of roots were found for different temperatures.Increasing light intensity affected dry matter production in two opposing ways: (i) it increased the rate of photosynthesis per unit leaf area, and (ii) it decreased the leaf area added per unit of dry matter produced. A pronounced increase in growth with increase in temperature from 13 to 18 °C was a result of a temperature influence on production of leaf area rather than the effect of photosynthesis per unit of leaf. Net assimilation rates decreased with increase in temperature at all light intensities.


Sign in / Sign up

Export Citation Format

Share Document