scholarly journals Quantitative analysis of Terminal Restriction Fragment Length Polymorphism (T-RFLP) microbial community profiles: peak height data showed to be more reproducible than peak area

2007 ◽  
Vol 38 (4) ◽  
pp. 736-738 ◽  
Author(s):  
Roberto A. Caffaro-Filho ◽  
Fabiana Fantinatti-Garboggini ◽  
Lucia R. Durrant
2003 ◽  
Vol 69 (11) ◽  
pp. 6481-6488 ◽  
Author(s):  
Costantino Vetriani ◽  
Hiep V. Tran ◽  
Lee J. Kerkhof

ABSTRACT Biomass samples from the Black Sea collected in 1988 were analyzed for SSU genes from Bacteria and Archaea after 10 years of storage at −80°C. Both clonal libraries and direct fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analyses were used to assess the microbial community. Uniform and discrete depth distributions of different SSU phylotypes were observed. However, most recombinant clones were not restricted to a specific depth in the water column, and many of the major T-RFLP peaks remain uncharacterized. Of the clones obtained, an ε-Proteobacteria and a Pseudoalteromonas-like clone accounted for major peaks in the fingerprint, while deeply branching lineages of α- and γ-Proteobacteria were associated with smaller peaks. Additionally, members were found among both the δ-Proteobacteria related to sulfate reducers and the Archaea related to phylotypes from the ANME groups that anaerobically oxidize methane.


2000 ◽  
Vol 66 (8) ◽  
pp. 3616-3620 ◽  
Author(s):  
Terence L. Marsh ◽  
Paul Saxman ◽  
James Cole ◽  
James Tiedje

ABSTRACT Rapid analysis of microbial communities has proven to be a difficult task. This is due, in part, to both the tremendous diversity of the microbial world and the high complexity of many microbial communities. Several techniques for community analysis have emerged over the past decade, and most take advantage of the molecular phylogeny derived from 16S rRNA comparative sequence analysis. We describe a web-based research tool located at the Ribosomal Database Project web site (http://www.cme.msu.edu/RDP/html/analyses.html ) that facilitates microbial community analysis using terminal restriction fragment length polymorphism of 16S ribosomal DNA. The analysis function (designated TAP T-RFLP) permits the user to perform in silico restriction digestions of the entire 16S sequence database and derive terminal restriction fragment sizes, measured in base pairs, from the 5′ terminus of the user-specified primer to the 3′ terminus of the restriction endonuclease target site. The output can be sorted and viewed either phylogenetically or by size. It is anticipated that the site will guide experimental design as well as provide insight into interpreting results of community analysis with terminal restriction fragment length polymorphisms.


2003 ◽  
Vol 69 (1) ◽  
pp. 320-326 ◽  
Author(s):  
Tillmann Lueders ◽  
Michael W. Friedrich

ABSTRACT Terminal restriction fragment length polymorphism (T-RFLP) analysis is a widely used method for profiling microbial community structure in different habitats by targeting small-subunit (SSU) rRNA and also functional marker genes. It is not known, however, whether relative gene frequencies of individual community members are adequately represented in post-PCR amplicon frequencies as shown by T-RFLP. In this study, precisely defined artificial template mixtures containing genomic DNA of four different methanogens in various ratios were prepared for subsequent T-RFLP analysis. PCR amplicons were generated from defined mixtures targeting not only the SSU rRNA but also the methyl-coenzyme M reductase (mcrA/mrtA) genes of methanogens. Relative amplicon frequencies of microorganisms were quantified by comparing fluorescence intensities of characteristic terminal restriction fragments. SSU ribosomal DNA (rDNA) template ratios in defined template mixtures of the four-membered community were recovered absolutely by PCR-T-RFLP analysis, which demonstrates that the T-RFLP analysis evaluated can give a quantitative view of the template pool. SSU rDNA-targeted T-RFLP analysis of a natural community was found to be highly reproducible, independent of PCR annealing temperature, and unaffected by increasing PCR cycle numbers. Ratios of mcrA-targeted T-RFLP analysis were biased, most likely by PCR selection due to the degeneracy of the primers used. Consequently, for microbial community analyses, each primer system used should be evaluated carefully for possible PCR bias. In fact, such bias can be detected by using T-RFLP analysis as a tool for the precise quantification of the PCR product pool.


Sign in / Sign up

Export Citation Format

Share Document