scholarly journals Periodontal ligament influence on the stress distribution in a removable partial denture supported by implant: a finite element analysis

2012 ◽  
Vol 20 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Carlos Marcelo Archangelo ◽  
Eduardo Passos Rocha ◽  
João Antônio Pereira ◽  
Manoel Martin Junior ◽  
Rodolfo Bruniera Anchieta ◽  
...  
Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 199-207
Author(s):  
Lohitha Kalluri ◽  
Bernard Seale ◽  
Megha Satpathy ◽  
Josephine F. Esquivel-Upshaw ◽  
Yuanyuan Duan

This study was performed as an adjunct to an existing clinical study to validate the effect of veneer: framework thickness ratio on stress distribution in an implant-supported all-ceramic fixed partial denture. Two commercially available titanium dental implants with corresponding customized abutments and a patient-retrieved all-ceramic fixed partial denture were scanned using a high-resolution micro-CT scanner. Reconstructed 3D objects, along with a simulated bone surface, were incorporated into a non-manifold assembly and meshed simultaneously using Simpleware software (Synopsys Simpleware ScanIP Version P-2019.09; Mountain View, CA). Three such volume meshes (Model A, Model B, Model C) corresponding to veneer: framework thickness ratios of 3:1, 1:1, and 1:3 respectively were created, and exported to a finite element analysis software (ABAQUS). An axial load of 110 N was applied uniformly on the occlusal surfaces to calculate the static stresses and contour plots were generated in the post-processing module. From the data obtained, we observed optimum stress distribution in Model B. Also, the tensile stresses were concentrated in the posterior connector region of the prosthesis in all three models tested. Within the limitations of this study, we can conclude that equal thickness of veneer and framework layers would aid in better stress distribution.


2018 ◽  
Vol 25 (2) ◽  
pp. 10
Author(s):  
Medardo Alexander Arenas-Chavarria ◽  
Samuel David Giraldo-Gómez ◽  
Federico Latorre-Correa ◽  
Junes Abdul Villarraga-Ossa

Aim: The purpose of this research was to evaluate the behavior of the system locator settings associated with distal extension removable partial denture lower (PPR) by finite element analysis (FEA). Materials and Methods: A Class II Kennedy 3D model using a CAD software Solid Works 2010 (SolidWorks Corp., Concord, MA, USA), and subsequently processed and analyzed by ANSYS Software version Model 14. One (1) was designed implant Tapered Screw -Vent® (ref TSVB10 Zimmer Dental-Carlsbad,CA,USA.) length x 10mm diameter 3.7mm with a 3.5mm platform, internal hexagon with its respective screw fixation; this was located at the tooth 37 as a rear pillar of a PPR, whose major connector was a lingual bar casting (alloy cobalt chromium), based combined (metal/ acrylic) with teeth to replace (37, 36 and 35). Efforts were evaluated von Mises in a 400N load. This analysis allowed assessing the performance of various prosthetic structures modeled and generated effects on bone-implant interface. Results: Differences between the values von Mises in all structures and loads were observed before there was no permanent deformation in any of them. Structures such as bone showed in normal values microstrain. Conclusions: The behavior of the PPRimplant connection, showed a favorable distribution efforts by using a PPR, subjecting it to load in the vertical direction.


2016 ◽  
Vol 17 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Ariel Adriano Reyes Pacheco ◽  
Armando Yukio Saga ◽  
Key Fonseca de Lima ◽  
Victor Nissen Paese

ABSTRACT Aim By using the finite element method (FEM), this study aimed to evaluate the effect of different corticotomy formats on the distribution and magnitude of stress on the periodontal ligament (PDL) during retraction of the maxillary canine. Materials and methods A geometric model of the left hemi-jaw was created from computed tomography scan images of a dry human skull and loads were administered during distalization movement of the canine. Three trials were performed: (1) without corticotomy, (2) box-shaped corticotomy and perforations in the cortical bone of the canine (CVC) and (3) CVC and circularshaped corticotomy in the cortical bone of the edentulous space of the first premolar. Results There was no difference in stress distribution among the different corticotomy formats. Conclusion Different corticotomy formats used to accelerate orthodontic tooth movement did not affect stress distribution in the PDL during canine retraction. Clinical significance From a mechanical perspective, the present study showed that the stress distribution on the PDL during canine retraction was similar in all the corticotomy formats. When using the Andrews T2 bracket, the PDL presented the highest levels of stress in the middle third of the PDL, suggesting that the force was near the center of resistance. Also, as bone weakening by corticotomies did not influence stress distribution, the surgical procedure could be simplified to a less aggressive one, focusing more on inflammatory cellular stimulation than on bone resistance. A simpler surgical act could also be performed by most orthodontists in their practices, enhancing postoperative response and reducing patient costs. How to cite this article Pacheco AAR, Saga AY, de Lima KF, Paese VN, Tanaka OM. Stress Distribution Evaluation of the Periodontal Ligament in the Maxillary Canine for Retraction by Different Alveolar Corticotomy Techniques: A Threedimensional Finite Element Analysis. J Contemp Dent Pract 2016;17(1):32-37.


Sign in / Sign up

Export Citation Format

Share Document