scholarly journals Assessment of genotoxicity and depuration of anthracene in the juvenile coastal fish Trachinotus carolinus using the comet assay

2013 ◽  
Vol 61 (4) ◽  
pp. 215-222 ◽  
Author(s):  
Fabio Matsu Hasue ◽  
Maria José de Arruda Campos Rocha Passos ◽  
Thaís da Cruz Alves dos Santos ◽  
Arthur José da Silva Rocha ◽  
Caroline Patrício Vignardi ◽  
...  

In the environment, anthracene is characterized as being persistent, bioaccumulative and toxic to aquatic organisms. Biotransformation of xenobiotic substances, such as anthracene, produces reactive oxygen species that may induce DNA strand breaks. The aim of the present study was to evaluate the DNA damage in juvenile T. carolinus exposed to different concentrations (8, 16 and 32 µg.L-1) of anthracene for 24 h in the dark then subsequently allowed to depurate in clean water for different periods of time (48, 96 or 144 h) using the comet assay. Our results show that anthracene is genotoxic to T. carolinus and that DNA damage was dose- and depuration/time- dependent. Anthracenegenotoxicity was observed in all experimental concentrations. Depuration seemed to be more efficient in fish exposed to thelowest anthracene concentration and maintained in clean water for 96 h.

2010 ◽  
Vol 29 (9) ◽  
pp. 721-729 ◽  
Author(s):  
B. Marczynski ◽  
M. Raulf-Heimsoth ◽  
B. Pesch ◽  
B. Kendzia ◽  
HU Käfferlein ◽  
...  

DNA strand breaks were determined in leucocytes of induced sputum (IS) and compared with DNA strand breaks in blood lymphocytes from 42 bitumen-exposed workers pre and post shift. Comet assay results were expressed in arbitrary units based on visual scoring (sputum leucocytes) and Olive tail moment (OTM, blood lymphocytes). DNA damage in IS leucocytes was overall high but did not change during shift. Level of DNA strand breaks in IS samples correlated with total cell count and neutrophil content (Spearman rank correlation coefficient rs = 0.47, p = 0.001, rs= 0.48, p = 0.001, respectively) and with IL-8 concentration before and after shift (rs = 0.31, P = 0.048, and rs = 0.43, P = 0.005). DNA damage in IS was not associated with DNA strand breaks in blood lymphocytes (rs = —0.04, p = 0.802 before shift, rs = 0.27, p = 0.088 after shift). A higher level of DNA strand breaks was measured in blood lymphocytes before shift (median OTM 1.7 before and 1.3 after shift, p = 0.023). A strong correlation was found between the number of neutrophils and IL-8 concentration in IS before and after shift (rs = 0.77 and rs= 0.75, p < 0.001). This study showed an association between genotoxic and inflammatory effects in the lower airways and compared simultaneously DNA strand breaks in IS and blood of bitumen-exposed workers.


Mutagenesis ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 239-244 ◽  
Author(s):  
Heinz H Schmeiser ◽  
Karl-Rudolf Muehlbauer ◽  
Walter Mier ◽  
Ann-Christin Baranski ◽  
Oliver Neels ◽  
...  

Abstract Radiopharmaceuticals used for diagnosis or therapy induce DNA strand breaks, which may be detectable by single-cell gel electrophoresis (called comet assay). Blood was taken from patients before and at different time points after treatment with radiopharmaceuticals; blood cells were investigated by the comet assay using the percentage of DNA in the tail as the critical parameter. Whereas [225Ac]Ac-prostate-specific membrane antigen (PSMA)-617 alpha therapy showed no difference relative to the blood sample taken before treatment, beta therapy with [177Lu]Lu-PSMA-617 3 h post-injection revealed a small but significant increase in DNA strand breaks. In blood of patients who underwent positron emission tomography (PET) with either [18F]2-fluor-2-deoxy-D-glucose (FDG) or [68Ga]Ga-PSMA-11, an increase of DNA migration determined by the comet assay was not found when analysed at different time points (2–70 min) after intravenous tracer injection. Human whole blood was incubated with the targeted clinically relevant therapeutic radiopharmaceuticals [225Ac]Ac-PSMA-617, [177Lu]Lu-PSMA-617 and [90Y]Y-DOTA(0)-Phe(1)-Tyr(3)-octreotide (DOTA-TOC) at different activity concentrations (kBq/ml) for 5 days and then analysed by the comet assay. DNA damage increased with higher concentrations of all radiolabeled compounds tested. [177Lu]Lu-PSMA-617 caused higher blood cell radiotoxicity than equal activity concentrations of [90Y]Y-DOTA-TOC. Likewise, whole human blood was exposed to the positron emitters [18F]FDG and [68Ga]Ga-PSMA-11 in vitro for 24 h with activity concentrations ranging between 5 and 40 MBq/ml. The same activity concentration dependent elevated DNA migration was observed for both compounds although decay energies are different. This study demonstrated that the amount of DNA damage detected by the comet assay in whole human blood is similar among different positron emitters and divergent by a factor of 200 between alpha particles and beta radiation.


1986 ◽  
Vol 163 (3) ◽  
pp. 746-751 ◽  
Author(s):  
D A Carson ◽  
S Seto ◽  
D B Wasson

The metabolic causes for immune impairment in patients with severe chronic inflammatory diseases have not been clearly defined. Recently, the overproduction of poly(ADP-ribose) in resting lymphocytes with unrepaired DNA strand breaks has been suggested to contribute to immune dysfunction in adenosine deaminase-deficient patients. Our experiments have determined to what extent DNA damage and poly(ADP-ribose) synthesis might also explain the impaired mitogen responsiveness of PBL exposed to toxic oxygen species. Treatment of normal resting human lymphocytes with xanthine oxidase and hypoxanthine dose-dependently induced DNA strand breaks and triggered the rapid synthesis of poly(ADP-ribose). Subsequently, NAD+ and ATP pools decreased precipitously. Lymphocytes exposed previously to the enzymatic oxidizing system did not synthesize DNA after stimulation with PHA. However, if the medium was supplemented with 3-aminobenzamide or nicotinamide, two compounds that inhibit poly(ADP-ribose) formation, cellular NAD+ and ATP pools were preserved, and the lymphocytes responded vigorously to a mitogenic challenge. Excessive poly(ADP-ribose) synthesis, provoked by DNA strand breakage, may represent a common pathway that connects the immunodeficiency syndromes associated with (a) exposure of lymphocytes to toxic oxygen species during chronic inflammatory states, (b) adenosine deaminase deficiency, and (c) certain DNA repair disorders.


1996 ◽  
Vol 24 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Mária Dušinská ◽  
Andrew Collins

The comet assay (single cell gel electrophoresis) is a rapid, very sensitive method for the detection of DNA strand breaks at the level of single cells, which is now being applied in genotojricity testing. We modified this method for the detection of a variety of kinds of DNA lesion, by treating nucleoid DNA in the gel with either formamidopyrimidine-DNA glycosylase (which recognises ring opened purines, 8-hydroxyguanine and apurinic/apyrimidinic sites), or uvrABC excinuclease (uvrABC; which has a rather broad specificity, including bulky lesions and UV photoproducts). By using this modified assay, we demonstrate the removal of DNA strand breaks and oxidised purines upon incubating cells after treatment with hydrogen peroxide. This modification clearly increases the usefulness of the assay for the analysis of DNA damage and repair, for screening human populations for DNA damage, and for testing novel chemicals for genotoxicity.


2011 ◽  
Vol 11 ◽  
pp. 1455-1461 ◽  
Author(s):  
İsmet Çok ◽  
Onur Kenan Ulutas ◽  
Öncü Okusluk ◽  
Emre Durmaz ◽  
Nilsun Demir

Contamination of the aquatic environment with various concentrations of pollutants results in unexpected threats to humans and wildlife. The consequences of exposure and metabolism of pollutants/xenobiotics, especially carcinogens and mutagens, can be suitably assessed by investigating severe events, such as DNA damage; for example, DNA adducts and DNA strand breaks. One of the commonly used techniques to detect DNA damage in aquatic organisms is single-cell gel electrophoresis (comet assay). This study was carried out usingCyprinus carpioin order to identify the possible pollution in Lake Mogan, near Ankara, Turkey, where the city's sewer system and pesticides used in agriculture are believed to be the common causes of pollution. From the comet assay, the tail length (μm), tail intensity (%), and tail moment values of fish caught from Lake Mogan were found to be 31.10 ± 10.39, 7.77 ± 4.51, 1.50 ± 1.48, respectively, whereas for clean reference sites they were found to be 22.80 ± 1.08, 3.47 ± 1.59, 0.40 ± 0.51, respectively. The values are statistically different from each other (p< 0.0001,p< 0.0001, andp< 0.0013, respectively). These results indicate that Lake Mogan may be polluted with substances that have genotoxic effects and constitute an early warning for the lake system. Further detailed research is needed to establish the source of the pollution and the chemicals responsible.


1996 ◽  
Vol 15 (11) ◽  
pp. 891-897 ◽  
Author(s):  
ZX Zhuang ◽  
Y. Shen ◽  
HM Shen ◽  
V. Ng ◽  
CN Ong

Nickel compounds are potent carcinogens. Their carcino genicity is believed to be associated with their solubility and cellular uptake. In the present study, we assessed the in vitro genotoxic effect of a water-insoluble nickel compound, crystalline nickel subsulfide (α-Ni 3S2) on human embryo lung fibroblast cell line (MRC-5 cells). DNA strand breaks was evaluated using single cell gel electrophoresis, or comet assay. The α-Ni3S2 induction of poly (ADP-ribose) polymerase (PADPRP), a nuclear enzyme associated with DNA damage and repair was also studied. Hydrogen peroxide (H2O2) was used as a reference compound. A dose-response relationship was found between α-Ni 3S2 concentrations (2.5 μg/cm2 to 20 μg/cm 2) and the comet tail length. The increase of PADPRP activity of α-Ni 3S2 treated MRC-5 cells was also significant and dose-dependent within the concentration range of 2.5 μg/ cm2 to 10 μg/cm 2. Close associations have been found between the comet length and PADPRP level for H2O2 (r=0.98) and α-Ni3S 2 (r=0.97). These results clearly suggest that α-Ni3S 2 is a potent agent in inducing DNA strand breaks, which may be closely related to its carcinogenic effects. Data from the present study also suggest that both comet assay and PADPRP determination are sensitive techniques for quantitative evaluation of DNA damage induced by nickel compounds.


Mutagenesis ◽  
2019 ◽  
Author(s):  
Peter Møller ◽  
Helga Stopper ◽  
Andrew R Collins

Abstract The comet assay is widely used in studies on genotoxicity testing, human biomonitoring and clinical studies. The simple version of the assay detects a mixture of DNA strand breaks and alkali-labile sites; these lesions are typically described as DNA strand breaks to distinguish them from oxidatively damaged DNA that are measured with the enzyme-modified comet assay. This review assesses the association between high-prevalence diseases in high-income countries and DNA damage measured with the comet assay in humans. The majority of case–control studies have assessed genotoxicity in white blood cells. Patients with coronary artery disease, diabetes, kidney disease, chronic obstructive pulmonary disease and Alzheimer’s disease have on average 2-fold higher levels of DNA strand breaks compared with healthy controls. Patients with coronary artery disease, diabetes, kidney disease and chronic obstructive pulmonary disease also have 2- to 3-fold higher levels of oxidatively damaged DNA in white blood cells than controls, although there is not a clear difference in DNA damage levels between the different diseases. Case–control studies have shown elevated levels of DNA strand breaks in patients with breast cancer, whereas there are only few studies on colorectal and lung cancers. At present, it is not possible to assess if these neoplastic diseases are associated with a different level of DNA damage compared with non-neoplastic diseases.


2001 ◽  
Vol 21 (21) ◽  
pp. 7191-7198 ◽  
Author(s):  
John R. Vance ◽  
Thomas E. Wilson

ABSTRACT In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3′-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3′ phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3′ processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3′ phosphates at strand breaks and does not possess more general 3′ phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion ofTPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3′ phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3′-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.


Sign in / Sign up

Export Citation Format

Share Document