scholarly journals Diffusion tensor imaging of the spinal cord: a review

2013 ◽  
Vol 12 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Aditya Vedantam ◽  
Michael Jirjis ◽  
Gerald Eckhardt ◽  
Abhishiek Sharma ◽  
Brian D. Schmit ◽  
...  

Diffusion tensor imaging (DTI) is a magnetic resonance technique capable of measuring the magnitude and direction of water molecule diffusion in various tissues. The use of DTI is being expanded to evaluate a variety of spinal cord disorders both for prognostication and to guide therapy. The purpose of this article is to review the literature on spinal cord DTI in both animal models and humans in different neurosurgical conditions. DTI of the spinal cord shows promise in traumatic spinal cord injury, cervical spondylotic myelopathy, and intramedullary tumors. However, scanning protocols and image processing need to be refined and standardized.

Neurosurgery ◽  
2013 ◽  
Vol 74 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Aditya Vedantam ◽  
Michael B. Jirjis ◽  
Brian D. Schmit ◽  
Marjorie C. Wang ◽  
John L. Ulmer ◽  
...  

Abstract Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indexes within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a noninvasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indexes are visualized in regions of the cord, which appear normal on conventional magnetic resonance imaging and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders.


2019 ◽  
Vol 5 (1) ◽  
pp. 59-64
Author(s):  
Jiefei Li ◽  
Le He ◽  
Yuqi Zhang

Objective: To explore the usefulness of multishot diffusion tensor imaging (DTI) for evaluating the neurological function of patients with spinal cord tumors Methods: Routine magnetic resonance imaging and multishot DTI were performed in five patients with spinal cord tumors. The values of fractional anisotropy (FA) and radial diffusivity (RD) were analyzed. Results: Multishot DTI of spinal cord tumors allowed for defining the margins of tumors and determining the relationship of tumors with the adjacent white matter structures of the spinal cord. Multishot DTI demonstrated significantly increased RD and decreased FA of spinal cord tumors compared with those of the normal spinal cord. Conclusions: Multishot DTI is a potentially useful modality for differentiating resectable tumors from nonresectable ones based on preoperative imaging alone as well as for differentiating intramedullary tumors from extramedullary ones. Further prospective studies are warranted to confirm these results.


Spinal Cord ◽  
2014 ◽  
Vol 52 (3) ◽  
pp. 202-208 ◽  
Author(s):  
E A Koskinen ◽  
U Hakulinen ◽  
A E Brander ◽  
T M Luoto ◽  
A Ylinen ◽  
...  

2020 ◽  
pp. 435-443
Author(s):  
Yijing Zhao ◽  
◽  
Yingyan Zheng ◽  
Zebin Xiao ◽  
Jianyi iu ◽  
...  

Objective: This study explored the feasibility of diffusion tensor imaging (DTI) in the evaluation of the long-term efficacy of hyperbaric oxygen (HBO2) therapy in rats after traumatic spinal cord injury (TSCI) with different degrees of injury. Method: Adult Sprague-Dawley rats (total n = 60) were randomly separated into three groups of mild, moderate and severe TSCI (20 rats per group). Each group was then randomly divided into TSCI and TSCI+HBO2 subgroups (10 rats per subgroup). Basso Beattie and Bresnahan (BBB) scores and DTI parameters including fractional anisotropy (FA), mean apparent diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) were collected at pre-TSCI and at 0, six and 24 hours, and three, seven, 14, 21, 28 and 56 days post-TSCI. Two-way repeated measures analysis of variance was used for comparison between the TSCI and TSCI+HBO2 subgroups over time in the mild, moderate and severe TSCI groups. Pearson correlation analysis was applied to analyze the correlations between BBB scores and DTI parameters. Results: BBB scores, FA, MD and RD values showed significant differences between the TSCI and TSCI+HBO2 subgroups over time in the mild, moderate and severe TSCI groups (all p<0.01). FA, MD and RD values were positively correlated with BBB scores in all TSCI and TSCI+HBO2 subgroups (all p<0.05). Conclusions: DTI parameters, especially MD, could quantifiably assess the long-term efficacy of HBO2 therapy and reflect the functional recovery in rats after TSCI with different degrees of injury.


2010 ◽  
Vol 27 (3) ◽  
pp. 587-598 ◽  
Author(s):  
Joong H. Kim ◽  
David N. Loy ◽  
Qing Wang ◽  
Matthew D. Budde ◽  
Robert E. Schmidt ◽  
...  

2008 ◽  
Vol 89 (12) ◽  
pp. S85-S91 ◽  
Author(s):  
Corie W. Wei ◽  
Januthy Tharmakulasingam ◽  
Adrian Crawley ◽  
David M. Kideckel ◽  
David J. Mikulis ◽  
...  

2007 ◽  
Vol 58 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Joong Hee Kim ◽  
David N. Loy ◽  
Hsiao-Fang Liang ◽  
Kathryn Trinkaus ◽  
Robert E. Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document