scholarly journals Development of high performance fiber reinforced cement composites (HPFRCC) for application as a transition layer of reinforced beams

2014 ◽  
Vol 7 (6) ◽  
pp. 965-975 ◽  
Author(s):  
V. J. Ferrari ◽  
A. P. Arquez ◽  
J. B. de Hanai ◽  
R. A. de Souza

This study presents the development and behavior analysis of high performance fiber reinforced cement composites (HPFRCC). The describedmaterials were specifically developed for application as a transition layer: a repair layer that constitutes the stressed chord of reinforcedconcrete beams strengthened in flexure with carbon fiber reinforced polymers (CFRP). Nineteen different composites were produced by thehybridization process, varying the conventional short steel fiber and steel microfiber (manufactured exclusively for this research) contentsto modify the microstructure of the material, thus enhancing the stress transfer process from the cement matrix to the fibers. To analyze theresponse to flexural loading, the composites underwent three point bending tests in notched prism specimens. The response of the materialwas obtained considering strength and tenacity parameters (flexural and fracture). There was evidence of high performance by the composites with a pseudo-hardening behavior.

2010 ◽  
Vol 163-167 ◽  
pp. 2549-2552
Author(s):  
Sang Hyun Nam ◽  
Young Jae Song ◽  
Sun Woo Kim ◽  
Hyun Do Yun

High performance fiber-reinforced cement composites (HPFRCCs) show multiple cracks and a limited damage tolerance capability due to the debonding of the fibers of the cement matrix. For practical applications, it is necessary to investigate the fractural behavior of HPFRCCs to understand the mechanism of the microbehavior of a cement matrix containing reinforcing fibers. We have investigated the acoustic emission (AE) signals in HPFRCCs under monotonic and cyclic uniaxial compressive loads. Four types of specimen were tested. The experimental parameters studied were: the type of fiber (polyethylene or polyvinyl alcohol), the hybrid type (with steel cord), and the loading pattern. The data shows that the progress of the damage in HPFRCCs in the compressive mode is characteristic of the type of hybrid fiber and its volume fraction. From the AE data, the second and third compressive load cycles resulted in a successive decrease in the amplitude compared to the first compressive load cycle. In addition, an AE Kaiser effect was observed in HPFRCCs specimens up to 80% of their ultimate strength. These observations suggest that the AE Kaiser effect has potential for use as a new tool to monitor the loading history of HPFRCCs.


Sign in / Sign up

Export Citation Format

Share Document