Effects of Cleft Type, Facemask Anchorage Method, and Alveolar Bone Graft on Maxillary Protraction: A Three-Dimensional Finite Element Analysis

2012 ◽  
Vol 49 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Ii-Hyung Yang ◽  
Young-Ii Chang ◽  
Tae-Woo Kim ◽  
Sug-Joon Ahn ◽  
Won-Hee Lim ◽  
...  

Objective To investigate biomechanical effects of cleft type (unilateral/bilateral cleft lip and palate), facemask anchorage method (tooth-borne and miniplate anchorage), and alveolar bone graft on maxillary protraction. Design Three-dimensional finite element analysis with application of orthopedic force (30° downward and forward to the occlusal plane, 500 g per side). Model Computed tomography data from a 13.5-year-old girl with maxillary hypoplasia. Intervention Eight three-dimensional finite element models were fabricated according to cleft type, facemask anchorage method, and alveolar bone graft. Main Outcome Measure(s) Initial stress distribution and displacement after force application were analyzed. Results Unilateral cleft lip and palate showed an asymmetric pattern in stress distribution and displacement before alveolar bone graft and demonstrated a symmetric pattern after alveolar bone graft. However, bilateral cleft lip and palate showed symmetric patterns in stress distribution and displacement before and after alveolar bone graft. In both cleft types, the graft extended the stress distribution area laterally beyond the infraorbital foramen. For both unilateral and bilateral cleft lip and palate, a facemask with a tooth-borne anchorage showed a dentoalveolar effect with prominent stress distribution and displacement on the upper canine point. In contrast, a facemask with miniplate anchorage exhibited an orthopedic effect with more favorable stress distribution and displacement on the middle maxilla point. In addition, the facemask with a miniplate anchorage showed a larger stress distribution area and suturai stress values than did the facemask with a tooth-borne anchorage. The pterygopalatine and zygomatico-maxillary sutures showed the largest suturai stress values with a facemask with a miniplate anchorage and after alveolar bone grafting, respectively. Conclusion In this three-dimensional finite element analysis, it would be more advantageous to perform maxillary protraction using a facemask with a miniplate anchorage than a facemask with a tooth-borne anchorage and after alveolar bone graft rather than before alveolar bone graft, regardless of cleft type.

2018 ◽  
Vol 23 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Mari Miura Sugii ◽  
Bruno de Castro Ferreira Barreto ◽  
Waldemir Francisco Vieira-Júnior ◽  
Katia Regina Izola Simone ◽  
Ataís Bacchi ◽  
...  

ABSTRACT Objective: The aim of his study was to evaluate the stress on tooth and alveolar bone caused by orthodontic intrusion forces in a supraerupted upper molar, by using a three-dimensional Finite Element Method (FEM). Methods: A superior maxillary segment was modeled in the software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, USA) containing: cortical and cancellous bone, supraerupted first molar, periodontal tissue and orthodontic components. A finite element model has simulated intrusion forces of 4N onto a tooth, directed to different mini-screw locations. Three different intrusion mechanics vectors were simulated: anchoring on a buccal mini-implant; anchoring on a palatal mini-implant and the association of both anchorage systems. All analyses were performed considering the minimum principal stress and total deformation. Qualitative analyses exhibited stress distribution by color maps. Quantitative analysis was performed with a specific software for reading and solving numerical equations (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, USA). Results: Intrusion forces applied from both sides (buccal and palatal) resulted in a more homogeneous stress distribution; no high peak of stress was detected and it has allowed a vertical resultant movement. Buccal or palatal single-sided forces resulted in concentrated stress zones with higher values and tooth tipping to respective force side. Conclusion: Unilateral forces promoted higher stress in root apex and higher dental tipping. The bilateral forces promoted better distribution without evidence of dental tipping. Bilateral intrusion technique suggested lower probability of root apex resorption.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


2021 ◽  
pp. 030157422097434
Author(s):  
V Sandhya ◽  
AV Arun ◽  
Vinay P Reddy ◽  
S Mahendra ◽  
BS Chandrashekar ◽  
...  

Background and Objectives: This study was conducted to determine the effective method to torque the incisor with thermoplastic aligner using a three-dimensional (3D) finite element method. Materials and Methods: Three finite element models of maxilla and maxillary dentition were developed. In the first model, thermoplastic aligner without any auxiliaries was used. In the second and third models, thermoplastic aligner with horizontal ellipsoid composite attachment and power ridge were used, respectively. The software used for the study was ANSYS 14.5 FE. A force of 100 g was applied to torque the upper right central incisor. The resultant force transfer, stress distribution, and tooth displacement were evaluated. Results: The overall tooth displacement and stress distribution appeared high in the model with power ridge, whereas the root movement was more in the horizontal ellipsoid composite attachment model. The model without any auxillaries produced least root movement and stress distribution. Conclusion: Horizontal ellipsoid composite attachment achieved better torque of central incisor than the model with power ridge and model without any auxillaries.


Sign in / Sign up

Export Citation Format

Share Document