Spatial and Temporal Variation in Species Composition, Diversity, and Structure of Mediterranean Dung Beetle Assemblages (Coleoptera: Scarabaeidae) Across a Bioclimatic Gradient

2012 ◽  
Vol 41 (4) ◽  
pp. 785-801 ◽  
Author(s):  
Imen Labidi ◽  
Faïek Errouissi ◽  
Saïd Nouira
2014 ◽  
Vol 44 (1) ◽  
pp. 30-39 ◽  
Author(s):  
M P Damborsky ◽  
M C Alvarez Bohle ◽  
M G Ibarra Polesel ◽  
E A Porcel ◽  
J L Fontana

2018 ◽  
Vol 69 (6) ◽  
pp. 883 ◽  
Author(s):  
Aneta Bylak ◽  
Krzysztof Kukuła

Different environmental preferences and dispersal abilities allow fish to coexist in local communities. In the present study we analysed the effects of engineering species on the community structure based on the example of the European beaver (Castor fiber) and mountainous European stream fish. We hypothesised that the creation of beaver impoundments increases environmental heterogeneity and causes a strong spatial and temporal variation in fish species composition and size structure. Finally, we placed these results in the context of the metacommunity theory. Our research was conducted over a large spatial scale, and over a relatively long (5-year) temporal scale. Data analysis revealed strong environmental gradients associated with stream size and increased environmental heterogeneity associated with the creation of beaver impoundments. The results also indicated strong spatial and temporal variation in fish species composition and size structure associated with this environmental heterogeneity. Although local communities changed over time, the main metacommunity characteristics remained constant. Fish must move and follow environmental changes for their populations and communities to persist in streams inhabited by beavers. Gaining a deeper understanding of the effects of the engineering species on fish community structure may help inform management and the conservation of stream ecosystems.


1987 ◽  
Vol 119 (1) ◽  
pp. 55-65
Author(s):  
Chris T. Maier ◽  
Donald W. Webb

AbstractRhagionids were studied principally by capturing adults in emergence traps at Southington (1979) and in Malaise traps at Hamden (1980–1983) and Guilford, CT (1983–1985). Most captures of Chrysopilus rotundipennis Loew, C. thoracicus (Fabr.), Rhagio mystaceus (Say), and Symphoromyia hirta Johnson occurred during a 2- to 5-week period. Mean capture dates for sexes differed significantly in only a few cases. Based on percentage of total captured, S. hirta and R. mystaceus ranked first and second at Hamden whereas C. rotundipennis and S. hirta had these respective ranks at Guilford. The sex ratio of C. ornatus (Say) adults in emergence traps did not depart significantly from 1.0, but most rhagionids captured in Malaise traps had skewed sex ratios. Based on percentage and quotient of similarity, faunas at Hamden and Guilford shared many species, but relative abundances of species common at one or both sites were very different. In this study, we found 14 rhagionid species, including 4 not previously recorded from Connecticut. A total of 16 species are now recorded from the state.


ZooKeys ◽  
2021 ◽  
Vol 1044 ◽  
pp. 951-991
Author(s):  
H. E. James Hammond ◽  
Sergio García-Tejero ◽  
Greg R. Pohl ◽  
David W. Langor ◽  
John R. Spence

Epigaeic beetle assemblages were surveyed using continuous pitfall trapping during the summers of 1992 and 1993 in six widely geographically distributed locations in Alberta’s aspen-mixedwood forests prior to initial forest harvest. Species composition and turnover (β-diversity) were evaluated on several spatial scales ranging from Natural Regions (distance between samples 120–420 km) to pitfall traps (40–60 m). A total of 19,885 ground beetles (Carabidae) representing 40 species and 12,669 rove beetles (non-AleocharinaeStaphylinidae) representing 78 species was collected. Beetle catch, species richness, and diversity differed significantly among the six locations, as did the identity of dominant species. Beetle species composition differed significantly between the Boreal Forest and Foothills Natural Regions for both taxa. Staphylinidae β-diversity differed significantly between Natural Regions, whereas Carabidae β-diversity differed among locations. Climate variables such as number of frost-free days, dry periods, and mean summer temperatures were identified as significant factors influencing beetle assemblages at coarse spatial scales, whereas over- and understory vegetation cover, litter depth, shade, slope, and stand age influenced beetle assemblages at finer spatial scales. Significant interannual variation in assemblage structure was noted for both taxa. Because composition of epigaeic beetle assemblages differed across spatial scales, forest management strategies based only on generalized understanding of a single location will be ineffective as conservation measures. In addition, site history and geographic variation significantly affect species distributions of these two beetle families across the landscape. Thus, we underscore Terry Erwin’s suggestion that biodiversity assessments focused on species assemblages at different spatial scales provide a sound approach for understanding biodiversity change and enhancing conservation of arthropod biodiversity.


Sign in / Sign up

Export Citation Format

Share Document