dispersal traits
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Adriana Alzate ◽  
Renske E. Onstein

AbstractUnderstanding what drives the vast variability in species range size is still an outstanding question. Among the several processes potentially affecting species ranges, dispersal is one of the most prominent hypothesized predictors. However, the theoretical expectation of a positive dispersal-range size relationship has received mixed empirical support. Here, we synthesized results from 84 studies to investigate in which context dispersal is most important in driving species range size. We found that dispersal traits – proxies for dispersal ability – explain range sizes more often in temperate and subtropical regions than in tropical regions, when considering multiple components of dispersal, and when investigating a large number of species to capture dispersal and range size variation. In plants, positive effects of dispersal on range size were less often detected when examining broad taxonomic levels. In animals, dispersal is more important for range size increase in ectotherms than in endotherms. Our synthesis emphasizes the importance of considering different aspects of the dispersal process -departure, transfer, settlement-, niche aspects and evolutionary components, like time for range expansion and past geological-environmental dynamics. We therefore call for a more integrative view of the dispersal process and its causal relationship with range size.


Author(s):  
Eliza Clark ◽  
Ellyn Bitume ◽  
Dan Bean ◽  
Amanda Stahlke ◽  
Paul Hohenlohe ◽  
...  

Evolutionary theory predicts that the process of range expansion will lead to differences between core and edge population in life history and dispersal traits. Selection and genetic drift can influence reproductive ability while spatial sorting by dispersal ability can increase dispersal at the edge. However, the context of individuals (e.g., population density and mating status) also impacts dispersal behavior. We evaluated theoretical predictions for evolution of reproductive life history and dispersal traits using the range expansion of a biological control agent, Diorhabda carinulata, or northern tamarisk beetle. We found divergence of fecundity, age at first reproduction, and female body size between core and edge populations. We also show that density and mating status influence dispersal and that dispersal increases at the edge of the range. We demonstrate that theory of evolution during range expansions applies to the range expansion of a biocontrol agent, especially when the ecological context is considered.


Author(s):  
Andrew V. Gougherty

In the northern hemisphere, many species have been reported to have greater genetic diversity in southern populations than northern populations - ostensibly due to migration northward following the last glacial maximum (LGM). The generality of this pattern, while well-established for some taxa, remains unclear for North American trees. To address this issue, I collected published population genetics data for 73 North American tree species, and tested whether genetic diversity was associated with latitude or longitude and whether geographic trends were associated with dispersal traits, range or study characteristics. I found there were no general geographic patterns in genetic diversity, and the strength of the geographic gradients were not associated with any species or study characteristics. Species in the northern and western regions of North America tended to have more species with genetic diversity that declined with latitude, but most species had no significant trend. This work shows that North American trees have complex, individualistic, patterns of genetic diversity that may negate explanation by any particular dispersal trait or range characteristic.


2021 ◽  
Vol 309 ◽  
pp. 107273
Author(s):  
Efrat Dener ◽  
Ofer Ovadia ◽  
Hagai Shemesh ◽  
Ariel Altman ◽  
Si-Chong Chen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryan M. Pearson ◽  
Thomas A. Schlacher ◽  
Kristin I. Jinks ◽  
Andrew D. Olds ◽  
Christopher J. Brown ◽  
...  

AbstractConnectivity is fundamentally important for shaping the resilience of complex human and natural networks when systems are disturbed. Ecosystem resilience is, in part, shaped by the spatial arrangement of habitats, the permeability and fluxes between them, the stabilising functions performed by organisms, their dispersal traits, and the interactions between functions and stressor types. Controlled investigations of the relationships between these phenomena under multiple stressors are sparse, possibly due to logistic and ethical difficulties associated with applying and controlling stressors at landscape scales. Here we show that grazing performance, a key ecosystem function, is linked to connectivity by manipulating the spatial configuration of habitats in microcosms impacted by multiple stressors. Greater connectivity enhanced ecosystem function and reduced variability in grazing performance in unperturbed systems. Improved functional performance was observed in better connected systems stressed by harvesting pressure and temperature rise, but this effect was notably reversed by the spread of disease. Connectivity has complex effects on ecological functions and resilience, and the nuances should be recognised more fully in ecosystem conservation.


Author(s):  
Natasha Kruger ◽  
John Measey ◽  
Giovanni Vimercati ◽  
Anthony Herrel ◽  
Jean Secondi

Abstract In amphibians, spatial sorting progressively enhances the dispersal capacities of dispersing stages in expanding populations but may enhance or limit the performance of the earlier non-dispersing stages. Phenotypic traits of non-dispersing tadpoles and metamorphs can be coupled, through carry-over effects and trade-offs, or decoupled to dispersal traits in adults. We used the globally invasive amphibian, Xenopus laevis, to examine whether spatial sorting of adult phenotypes affects the phenotype of larval stages to metamorphosis in the core and at the periphery of an invasive population in France. We combined common garden laboratory and outdoor experiments to test the effect of parental pond location (core or periphery) on morphology, development and survival to metamorphosis and found no differences between tadpoles. After metamorphosis, the only difference observed in either of the experiments was the larger body size of metamorphs from the periphery, and then only when reared in the laboratory. Differences in metamorph size may indicate that a shift of dispersal traits occur after metamorphosis in X. laevis. Thus, our findings illustrate that decoupled evolution through spatial sorting can lead to changes of X. laevis adult phenotypes that would enhance dispersal without affecting the phenotype of tadpoles before metamorphosis.


2020 ◽  
Author(s):  
Efrat Dener ◽  
Hagai Shemesh ◽  
Itamar Giladi

Abstract Aims The evolution and expression of dispersal-related traits are intertwined with those of other life-history functions and are manifested within various physiological constraints. Such a relationship is predicted between inbreeding levels and dispersability, which may be anatomically and ontogenetically linked so that the selection pressures on one may affect the other. While both the effect of inbreeding on reproductive success and on dispersal strategies received much attention, only a few studies considered both simultaneously. Furthermore, such studies often rely on two dichotomic representations of breeding and dispersal: using selfing vs. outcrossing as a representation of breeding level, and dispersal ratio as the sole representation of dispersal strategy. Methods Here we used pollination experiments in the heterocarpic Crepis sancta (Asteraceae) to expand in two different manners on the common practice of using dichotomic representations of breeding and dispersal. First, we used pollination treatments that represent a continuum from selfing through pollination by kin to pollination by a distant neighbor. Second, we measured a whole set of continuous morphological and dispersal-related traits, in addition to measurements of reproductive success and dispersal ratio. Important findings The proportion of developed capitula and the number of both dispersed and non-dispersed achenes were significantly lower in the self-pollination treatment in comparison to the out-crossed treatments. The effect of pollen sources on dispersal ratio was not statistically significant, though self-pollinated plants rarely produced non-dispersing seeds. Achene’s biomass increased with distance between parent plants, but pappus width did not, leading to a nonsignificant effect of pollination on falling velocity. Overall, pollen source affected mainly traits that were associated with reproductive output, but it had no clear effect on predominately dispersal-related traits. Such differences in the response of reproduction and dispersal traits to variation in pollen source suggest that dispersal-related selection is probably weak and/or masked by other forces.


2020 ◽  
Author(s):  
Ridouan Bani ◽  
Tianna Peller ◽  
Justin Marleau ◽  
Marie-Josée Fortin ◽  
Frédéric Guichard

AbstractThe design of marine protected areas (MPAs) has been optimized under assumptions of spatially and temporally homogeneous larval dispersal, despite complex spatiotemporal patterns displayed by ocean currents. Here we studied the effect of dispersal variability on the effectiveness of MPA networks across scales. We adopted a nested approach integrating the dynamics of both within and among MPA connectivity into a stochastic metapopulation model and first derived metapopulation persistence (required reproductive effort) and stability over MPA networks by partitioning within and among MPA contributions in relation to the spatial resolution of within-MPA connectivity. We applied this framework over a range of dispersal traits (spawning time and pelagic larval duration) and MPA network configurations, based on simulated biophysical connectivity along the northeast Pacific coast. Our results show how within-MPA dynamics affect predictions based on parameters of MPA networks such as MPA size, spacing, and pelagic larval duration. Increasing within-MPA spatial resolution predicted increasing population persistence and stability independently of other network properties. High-resolution within-MPA dynamics also predicted a negative relationship between species persistence and MPA spacing while that relationship was non-monotonic under low-resolution within-MPA dynamics. Our analysis also resolved the role of pelagic larval duration for scaling up within-MPA dynamics to MPA networks: species with short larval duration led to increasing network stability with MPA spacing while the opposite was observed for species with long larval duration. Our study stresses the importance of integrating fluctuating larval connectivity, both within and among MPAs, and more specifically suggest the benefit of small and nearby MPAs under increasing ocean variability.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Romain Sarremejane ◽  
Núria Cid ◽  
Rachel Stubbington ◽  
Thibault Datry ◽  
Maria Alp ◽  
...  

Abstract Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms’ morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.


Sign in / Sign up

Export Citation Format

Share Document