scholarly journals Strategic Tasks for Explainable Reinforcement Learning

Author(s):  
Rey Pocius ◽  
Lawrence Neal ◽  
Alan Fern

Commonly used sequential decision making tasks such as the games in the Arcade Learning Environment (ALE) provide rich observation spaces suitable for deep reinforcement learning. However, they consist mostly of low-level control tasks which are of limited use for the development of explainable artificial intelligence(XAI) due to the fine temporal resolution of the tasks. Many of these domains also lack built-in high level abstractions and symbols. Existing tasks that provide for both strategic decision-making and rich observation spaces are either difficult to simulate or are intractable. We provide a set of new strategic decision-making tasks specialized for the development and evaluation of explainable AI methods, built as constrained mini-games within the StarCraft II Learning Environment.

Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


Author(s):  
Daoming Lyu ◽  
Fangkai Yang ◽  
Bo Liu ◽  
Daesub Yoon

Deep reinforcement learning (DRL) has gained great success by learning directly from high-dimensional sensory inputs, yet is notorious for the lack of interpretability. Interpretability of the subtasks is critical in hierarchical decision-making as it increases the transparency of black-box-style DRL approach and helps the RL practitioners to understand the high-level behavior of the system better. In this paper, we introduce symbolic planning into DRL and propose a framework of Symbolic Deep Reinforcement Learning (SDRL) that can handle both high-dimensional sensory inputs and symbolic planning. The task-level interpretability is enabled by relating symbolic actions to options. This framework features a planner – controller – meta-controller architecture, which takes charge of subtask scheduling, data-driven subtask learning, and subtask evaluation, respectively. The three components cross-fertilize each other and eventually converge to an optimal symbolic plan along with the learned subtasks, bringing together the advantages of long-term planning capability with symbolic knowledge and end-to-end reinforcement learning directly from a high-dimensional sensory input. Experimental results validate the interpretability of subtasks, along with improved data efficiency compared with state-of-the-art approaches.


2017 ◽  
Vol 29 (12) ◽  
pp. 2103-2113 ◽  
Author(s):  
Samuel J. Gershman ◽  
Jimmy Zhou ◽  
Cody Kommers

Imagination enables us not only to transcend reality but also to learn about it. In the context of reinforcement learning, an agent can rationally update its value estimates by simulating an internal model of the environment, provided that the model is accurate. In a series of sequential decision-making experiments, we investigated the impact of imaginative simulation on subsequent decisions. We found that imagination can cause people to pursue imagined paths, even when these paths are suboptimal. This bias is systematically related to participants' optimism about how much reward they expect to receive along imagined paths; providing feedback strongly attenuates the effect. The imagination effect can be captured by a reinforcement learning model that includes a bonus added onto imagined rewards. Using fMRI, we show that a network of regions associated with valuation is predictive of the imagination effect. These results suggest that imagination, although a powerful tool for learning, is also susceptible to motivational biases.


2021 ◽  
Author(s):  
Amjad Yousef Majid ◽  
Serge Saaybi ◽  
Tomas van Rietbergen ◽  
Vincent Francois-Lavet ◽  
R Venkatesha Prasad ◽  
...  

<div>Deep Reinforcement Learning (DRL) and Evolution Strategies (ESs) have surpassed human-level control in many sequential decision-making problems, yet many open challenges still exist.</div><div>To get insights into the strengths and weaknesses of DRL versus ESs, an analysis of their respective capabilities and limitations is provided. </div><div>After presenting their fundamental concepts and algorithms, a comparison is provided on key aspects such as scalability, exploration, adaptation to dynamic environments, and multi-agent learning. </div><div>Then, the benefits of hybrid algorithms that combine concepts from DRL and ESs are highlighted. </div><div>Finally, to have an indication about how they compare in real-world applications, a survey of the literature for the set of applications they support is provided.</div>


Author(s):  
Dongliang He ◽  
Xiang Zhao ◽  
Jizhou Huang ◽  
Fu Li ◽  
Xiao Liu ◽  
...  

The task of video grounding, which temporally localizes a natural language description in a video, plays an important role in understanding videos. Existing studies have adopted strategies of sliding window over the entire video or exhaustively ranking all possible clip-sentence pairs in a presegmented video, which inevitably suffer from exhaustively enumerated candidates. To alleviate this problem, we formulate this task as a problem of sequential decision making by learning an agent which regulates the temporal grounding boundaries progressively based on its policy. Specifically, we propose a reinforcement learning based framework improved by multi-task learning and it shows steady performance gains by considering additional supervised boundary information during training. Our proposed framework achieves state-of-the-art performance on ActivityNet’18 DenseCaption dataset (Krishna et al. 2017) and Charades-STA dataset (Sigurdsson et al. 2016; Gao et al. 2017) while observing only 10 or less clips per video.


2019 ◽  
Vol 1 (2) ◽  
pp. 590-610
Author(s):  
Zohreh Akbari ◽  
Rainer Unland

Sequential Decision Making Problems (SDMPs) that can be modeled as Markov Decision Processes can be solved using methods that combine Dynamic Programming (DP) and Reinforcement Learning (RL). Depending on the problem scenarios and the available Decision Makers (DMs), such RL algorithms may be designed for single-agent systems or multi-agent systems that either consist of agents with individual goals and decision making capabilities, which are influenced by other agent’s decisions, or behave as a swarm of agents that collaboratively learn a single objective. Many studies have been conducted in this area; however, when concentrating on available swarm RL algorithms, one obtains a clear view of the areas that still require attention. Most of the studies in this area focus on homogeneous swarms and so far, systems introduced as Heterogeneous Swarms (HetSs) merely include very few, i.e., two or three sub-swarms of homogeneous agents, which either, according to their capabilities, deal with a specific sub-problem of the general problem or exhibit different behaviors in order to reduce the risk of bias. This study introduces a novel approach that allows agents, which are originally designed to solve different problems and hence have higher degrees of heterogeneity, to behave as a swarm when addressing identical sub-problems. In fact, the affinity between two agents, which measures the compatibility of agents to work together towards solving a specific sub-problem, is used in designing a Heterogeneous Swarm RL (HetSRL) algorithm that allows HetSs to solve the intended SDMPs.


2014 ◽  
Vol 2014 (1) ◽  
pp. 12022
Author(s):  
Thorsten Grohsjean ◽  
Nils Stieglitz ◽  
Tobias Kretschmer

Sign in / Sign up

Export Citation Format

Share Document