scholarly journals On Rational Delegations in Liquid Democracy

Author(s):  
Daan Bloembergen ◽  
Davide Grossi ◽  
Martin Lackner

Liquid democracy is a proxy voting method where proxies are delegable. We propose and study a game-theoretic model of liquid democracy to address the following question: when is it rational for a voter to delegate her vote? We study the existence of pure-strategy Nash equilibria in this model, and how group accuracy is affected by them. We complement these theoretical results by means of agent-based simulations to study the effects of delegations on group’s accuracy on variously structured social networks.

2021 ◽  
Author(s):  
Zhongbin Wang ◽  
Luyi Yang ◽  
Shiliang Cui ◽  
Jinting Wang

AbstractPay-for-priority is a common practice in congestion-prone service systems. The extant literature on this topic restricts attention to the case where the only epoch for customers to purchase priority is upon arrival, and if customers choose not to upgrade when they arrive, they cannot do so later during their wait. A natural alternative is to let customers pay and upgrade to priority at any time during their stay in the queue, even if they choose not to do so initially. This paper builds a queueing-game-theoretic model that explicitly captures self-interested customers’ dynamic in-queue priority-purchasing behavior. When all customers (who have not upgraded yet) simultaneously decide whether to upgrade, we find in our model that pure-strategy equilibria do not exist under some intuitive criteria, contrasting the findings in classical models where customers can only purchase priority upon arrival. However, when customers sequentially decide whether to upgrade, threshold-type pure-strategy equilibria may exist. In particular, under sufficiently light traffic, if the number of ordinary customers accumulates to a certain threshold, then it is always the second last customer who upgrades, but in general, it could be a customer from another position, and the queue-length threshold that triggers an upgrade can also vary with the traffic intensity. Finally, we find that in-queue priority purchase subject to the sequential rule yields less revenue than upon-arrival priority purchase in systems with small buffers.


2015 ◽  
Vol 57 (2-3) ◽  
pp. 393-411 ◽  
Author(s):  
Eveline van Leeuwen ◽  
Mark Lijesen

Author(s):  
Xinrun Wang ◽  
Bo An ◽  
Hau Chan

Due to the recent cyber attacks, cybersecurity is becoming more critical in modern society. A single attack (e.g., WannaCry ransomware attack) can cause as much as $4 billion in damage. However, the cybersecurity investment by companies is far from satisfactory. Therefore, governments (e.g., in the UK) launch grants and subsidies to help companies to boost their cybersecurity to create a safer national cyber environment. The allocation problem is hard due to limited subsidies and the interdependence between self-interested companies and the presence of a strategic cyber attacker. To tackle the government's allocation problem, we introduce a Stackelberg game-theoretic model where the government first commits to an allocation and the companies/users and attacker simultaneously determine their protection and attack (pure or mixed) strategies, respectively. For the pure-strategy case, while there may not be a feasible allocation in general, we prove that computing an optimal allocation is NP-hard and propose a linear reverse convex program when the attacker can attack all users. For the mixed-strategy case, we show that there is a polynomial time algorithm to find an optimal allocation when the attacker has a single-attack capability. We then provide a heuristic algorithm, based on best-response-gradient dynamics, to find an effective allocation in the general setting. Experimentally, we show that our heuristic is effective and outperforms other baselines on synthetic and real data.


2013 ◽  
Vol 40 (8) ◽  
pp. 3207-3219 ◽  
Author(s):  
Babak Khosravifar ◽  
Jamal Bentahar ◽  
Rabeb Mizouni ◽  
Hadi Otrok ◽  
Mahsa Alishahi ◽  
...  

1998 ◽  
Vol 01 (04) ◽  
pp. 325-359 ◽  
Author(s):  
Vivek S. Borkar ◽  
Sanjay Jain ◽  
Govindan Rangarajan

We consider a generalization of replicator dynamics as a non-cooperative evolutionary game-theoretic model of a community of N agents. All agents update their individual mixed strategy profiles to increase their total payoff from the rest of the community. The properties of attractors in this dynamics are studied. Evidence is presented that under certain conditions the typical attractors of the system are corners of state space where each agent has specialized to a pure strategy, and/or the community exhibits diversity, i.e., all strategies are represented in the final states. The model suggests that new pure strategies whose payoff matrix elements satisfy suitable inequalities with respect to the existing ones can destabilize existing attractors if N is sufficiently large, and be regarded as innovations that enhance the diversity of the community.


Author(s):  
Muzna Zafar ◽  
Kashif Zia ◽  
Dinesh Kumar Saini ◽  
Arshad Muhammad ◽  
Alois Ferscha

Purpose It has been witnessed that many incidents of crowd evacuation have resulted in catastrophic results, claiming lives of hundreds of people. Most of these incidents were a result of localized herding that eventually turned into global panic. Many crowd evacuation models have been proposed with different aspects of interests. The purpose of this paper is to attempt to bring together many of these aspects to study evacuation dynamics. Design/methodology/approach The proposed agent-based model, in a hypothetical physical environment, uses perception maps for routing decisions which are constructed from agents’ personal observations of the surroundings as well as information gathered through distant communication. Communication is governed by a trust model which measures the authenticity of the information being shared. Agents are of two types; emotional and rational. The trust model is combined with a game-theoretic model to resolve conflict of agents’ own type with that of types of agents in the neighborhood. Findings Evacuation dynamics in different environmental and exit strategies are evaluated on the basis of reduced herding and evacuation time. Using this integrated information sharing model, agents gain an overall view of the environment, sufficient to select the optimal path towards exits with respect to reduced herding and evacuation time. Originality/value The proposed model has been formulated and established using an agent-based simulation integrating important modeling aspects. The paper helps in understanding the interplay between technological and humanistic aspects in smart and pervasive environments.


2015 ◽  
Vol 282 (1808) ◽  
pp. 20150392 ◽  
Author(s):  
Stéphane Debove ◽  
Jean-Baptiste André ◽  
Nicolas Baumard

Many studies demonstrate that partner choice has played an important role in the evolution of human cooperation, but little work has tested its impact on the evolution of human fairness. In experiments involving divisions of money, people become either over-generous or over-selfish when they are in competition to be chosen as cooperative partners. Hence, it is difficult to see how partner choice could result in the evolution of fair, equal divisions. Here, we show that this puzzle can be solved if we consider the outside options on which partner choice operates. We conduct a behavioural experiment, run agent-based simulations and analyse a game-theoretic model to understand how outside options affect partner choice and fairness. All support the conclusion that partner choice leads to fairness only when individuals have equal outside options. We discuss how this condition has been met in our evolutionary history, and the implications of these findings for our understanding of other aspects of fairness less specific than preferences for equal divisions of resources.


2017 ◽  
pp. 120-130
Author(s):  
A. Lyasko

Informal financial operations exist in the shadow of official regulation and cannot be protected by the formal legal instruments, therefore raising concerns about the enforcement of obligations taken by their participants. This paper analyzes two alternative types of auxiliary institutions, which can coordinate expectations of the members of informal value transfer systems, namely attitudes of trust and norms of social control. It offers some preliminary approaches to creating a game-theoretic model of partner interaction in the informal value transfer system. It also sheds light on the perspectives of further studies in this area of institutional economics.


Sign in / Sign up

Export Citation Format

Share Document