scholarly journals OF-MSRN: Optical Flow-Auxiliary Multi-Task Regression Network for Direct Quantitative Measurement, Segmentation and Motion Estimation

2020 ◽  
Vol 34 (01) ◽  
pp. 1218-1225
Author(s):  
Chengqian Zhao ◽  
Cheng Feng ◽  
Dengwang Li ◽  
Shuo Li

Comprehensively analyzing the carotid artery is critically significant to diagnosing and treating cardiovascular diseases. The object of this work is to simultaneously achieve direct quantitative measurement and automated segmentation of the lumen diameter and intima-media thickness as well as the motion estimation of the carotid wall. No work has simultaneously achieved the comprehensive analysis of carotid artery due to three intractable challenges: 1) Tiny intima-media is more challenging to measure and segment; 2) Artifact generated by radial motion restrict the accuracy of measurement and segmentation; 3) Occlusions on diseased carotid walls generate dynamic complexity and indeterminacy. In this paper, we propose a novel optical flow-auxiliary multi-task regression network named OF-MSRN to overcome these challenges. We concatenate multi-scale features to a regression network to simultaneously achieve measurement and segmentation, which makes full use of the potential correlation between the two tasks. More importantly, we creatively explore an optical flow auxiliary module to take advantage of the co-promotion of segmentation and motion estimation to overcome the restrictions of the radial motion. Besides, we evaluate consistency between forward and backward optical flow to improve the accuracy of motion estimation of the diseased carotid wall. Extensive experiments on US sequences of 101 patients demonstrate the superior performance of OF-MSRN on the comprehensive analysis of the carotid artery by utilizing the dual optimization of the optical flow auxiliary module.

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 222
Author(s):  
Baigan Zhao ◽  
Yingping Huang ◽  
Hongjian Wei ◽  
Xing Hu

Visual odometry (VO) refers to incremental estimation of the motion state of an agent (e.g., vehicle and robot) by using image information, and is a key component of modern localization and navigation systems. Addressing the monocular VO problem, this paper presents a novel end-to-end network for estimation of camera ego-motion. The network learns the latent subspace of optical flow (OF) and models sequential dynamics so that the motion estimation is constrained by the relations between sequential images. We compute the OF field of consecutive images and extract the latent OF representation in a self-encoding manner. A Recurrent Neural Network is then followed to examine the OF changes, i.e., to conduct sequential learning. The extracted sequential OF subspace is used to compute the regression of the 6-dimensional pose vector. We derive three models with different network structures and different training schemes: LS-CNN-VO, LS-AE-VO, and LS-RCNN-VO. Particularly, we separately train the encoder in an unsupervised manner. By this means, we avoid non-convergence during the training of the whole network and allow more generalized and effective feature representation. Substantial experiments have been conducted on KITTI and Malaga datasets, and the results demonstrate that our LS-RCNN-VO outperforms the existing learning-based VO approaches.


2020 ◽  
Vol 31 (12) ◽  
pp. 1246-1258 ◽  
Author(s):  
Maik Drechsler ◽  
Lukas F. Lang ◽  
Layla Al-Khatib ◽  
Hendrik Dirks ◽  
Martin Burger ◽  
...  

Here we introduce an optical flow motion estimation approach to study microtubule (MT) orientation in the Drosophila oocyte, a cell displaying substantial cytoplasmic streaming. We show that MT polarity is affected by the regime of these flows and, furthermore, that the presence of flows is necessary for MTs to adopt their proper polarity.


Sign in / Sign up

Export Citation Format

Share Document