scholarly journals Fully Convolutional Network for Consistent Voxel-Wise Correspondence

2020 ◽  
Vol 34 (07) ◽  
pp. 12935-12942 ◽  
Author(s):  
Yungeng Zhang ◽  
Yuru Pei ◽  
Yuke Guo ◽  
Gengyu Ma ◽  
Tianmin Xu ◽  
...  

In this paper, we propose a fully convolutional network-based dense map from voxels to invertible pair of displacement vector fields regarding a template grid for the consistent voxel-wise correspondence. We parameterize the volumetric mapping using a convolutional network and train it in an unsupervised way by leveraging the spatial transformer to minimize the gap between the warped volumetric image and the template grid. Instead of learning the unidirectional map, we learn the nonlinear mapping functions for both forward and backward transformations. We introduce the combinational inverse constraints for the volumetric one-to-one maps, where the pairwise and triple constraints are utilized to learn the cycle-consistent correspondence maps between volumes. Experiments on both synthetic and clinically captured volumetric cone-beam CT (CBCT) images show that the proposed framework is effective and competitive against state-of-the-art deformable registration techniques.

Author(s):  
Salam Dhou ◽  
Mohanad Alkhodari ◽  
Dan Ionascu ◽  
Christopher Williams ◽  
John H. Lewis

A method for generating fluoroscopic (time-varying) volumetric images using patient-specific motion models derived from 4-dimensional cone-beam CT (4D-CBCT) images is developed. 4D-CBCT images acquired immediately prior to treatment have the potential to accurately represent patient anatomy and respiration during treatment. Fluoroscopic 3D image estimation is done in two steps: 1) deriving motion models and 2) optimization. To derive motion models, every phase in a 4D-CBCT set is registered to a reference phase chosen from the same set using deformable image registration (DIR). Principal components analysis (PCA) is used to reduce the dimensionality of the displacement vector fields (DVFs) resulting from DIR into a few vectors representing organ motion found in the DVFs. The PCA motion models are optimized iteratively by comparing a cone-beam CT (CBCT) projection to a simulated projection computed from both the motion model and a reference 4D-CBCT phase, resulting in a sequence of fluoroscopic 3D images. Patient datasets were used to evaluate the method by estimating the tumor location in the generated images compared to manually defined ground truth positions. Experimental results showed that the average tumor mean absolute error (MAE) along the superior-inferior (SI) direction and the 95th percentile in two patient datasets were (2.29 mm and 5.79 mm) for patient 1 and (1.89 mm and 4.82 mm) for patient 2. This study has demonstrated the feasibility of deriving 4D-CBCT-based PCA motion models that have the potential to account for the 3D non-rigid patient motion and localize tumors and other patient anatomical structures on the day of treatment.


2019 ◽  
Vol 9 (10) ◽  
pp. 2042 ◽  
Author(s):  
Rachida Tobji ◽  
Wu Di ◽  
Naeem Ayoub

In Deep Learning, recent works show that neural networks have a high potential in the field of biometric security. The advantage of using this type of architecture, in addition to being robust, is that the network learns the characteristic vectors by creating intelligent filters in an automatic way, grace to the layers of convolution. In this paper, we propose an algorithm “FMnet” for iris recognition by using Fully Convolutional Network (FCN) and Multi-scale Convolutional Neural Network (MCNN). By taking into considerations the property of Convolutional Neural Networks to learn and work at different resolutions, our proposed iris recognition method overcomes the existing issues in the classical methods which only use handcrafted features extraction, by performing features extraction and classification together. Our proposed algorithm shows better classification results as compared to the other state-of-the-art iris recognition approaches.


Sign in / Sign up

Export Citation Format

Share Document