scholarly journals TensorLog: A Probabilistic Database Implemented Using Deep-Learning Infrastructure

2020 ◽  
Vol 67 ◽  
pp. 285-325
Author(s):  
William Cohen ◽  
Fan Yang ◽  
Kathryn Rivard Mazaitis

We present an implementation of a probabilistic first-order logic called TensorLog, in which classes of logical queries are compiled into differentiable functions in a neural-network infrastructure such as Tensorflow or Theano. This leads to a close integration of probabilistic logical reasoning with deep-learning infrastructure: in particular, it enables high-performance deep learning frameworks to be used for tuning the parameters of a probabilistic logic. The integration with these frameworks enables use of GPU-based parallel processors for inference and learning, making TensorLog the first highly parallellizable probabilistic logic. Experimental results show that TensorLog scales to problems involving hundreds of thousands of knowledge-base triples and tens of thousands of examples.

Author(s):  
Sebastijan Dumancic ◽  
Tias Guns ◽  
Wannes Meert ◽  
Hendrik Blockeel

Deep learning methods capable of handling relational data have proliferated over the past years. In contrast to traditional relational learning methods that leverage first-order logic for representing such data, these methods aim at re-representing symbolic relational data in Euclidean space. They offer better scalability, but can only approximate rich relational structures and are less flexible in terms of reasoning. This paper introduces a novel framework for relational representation learning that combines the best of both worlds. This framework, inspired by the auto-encoding principle, uses first-order logic as a data representation language, and the mapping between the the original and latent representation is done by means of logic programs instead of neural networks. We show how learning can be cast as a constraint optimisation problem for which existing solvers can be used. The use of logic as a representation language makes the proposed framework more accurate (as the representation is exact, rather than approximate), more flexible, and more interpretable than deep learning methods. We experimentally show that these latent representations are indeed beneficial in relational learning tasks.


Author(s):  
Kavita Srivastava

The steep rise in autonomous systems and the internet of things in recent years has influenced the way in which computation has performed. With built-in AI (artificial intelligence) in IoT and cyber-physical systems, the need for high-performance computing has emerged. Cloud computing is no longer sufficient for the sensor-driven systems which continuously keep on collecting data from the environment. The sensor-based systems such as autonomous vehicles require analysis of data and predictions in real-time which is not possible only with the centralized cloud. This scenario has given rise to a new computing paradigm called edge computing. Edge computing requires the storage of data, analysis, and prediction performed on the network edge as opposed to a cloud server thereby enabling quick response and less storage overhead. The intelligence at the edge can be obtained through deep learning. This chapter contains information about various deep learning frameworks, hardware, and systems for edge computing and examples of deep neural network training using the Caffe 2 framework.


Author(s):  
Gabriele Ciravegna ◽  
Francesco Giannini ◽  
Marco Gori ◽  
Marco Maggini ◽  
Stefano Melacci

Deep neural networks are usually considered black-boxes due to their complex internal architecture, that cannot straightforwardly provide human-understandable explanations on how they behave. Indeed, Deep Learning is still viewed with skepticism in those real-world domains in which incorrect predictions may produce critical effects. This is one of the reasons why in the last few years Explainable Artificial Intelligence (XAI) techniques have gained a lot of attention in the scientific community. In this paper, we focus on the case of multi-label classification, proposing a neural network that learns the relationships among the predictors associated to each class, yielding First-Order Logic (FOL)-based descriptions. Both the explanation-related network and the classification-related network are jointly learned, thus implicitly introducing a latent dependency between the development of the explanation mechanism and the development of the classifiers. Our model can integrate human-driven preferences that guide the learning-to-explain process, and it is presented in a unified framework. Different typologies of explanations are evaluated in distinct experiments, showing that the proposed approach discovers new knowledge and can improve the classifier performance.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

2020 ◽  
Vol 26 ◽  
Author(s):  
Xiaoping Min ◽  
Fengqing Lu ◽  
Chunyan Li

: Enhancer-promoter interactions (EPIs) in the human genome are of great significance to transcriptional regulation which tightly controls gene expression. Identification of EPIs can help us better deciphering gene regulation and understanding disease mechanisms. However, experimental methods to identify EPIs are constrained by the fund, time and manpower while computational methods using DNA sequences and genomic features are viable alternatives. Deep learning methods have shown promising prospects in classification and efforts that have been utilized to identify EPIs. In this survey, we specifically focus on sequence-based deep learning methods and conduct a comprehensive review of the literatures of them. We first briefly introduce existing sequence-based frameworks on EPIs prediction and their technique details. After that, we elaborate on the dataset, pre-processing means and evaluation strategies. Finally, we discuss the challenges these methods are confronted with and suggest several future opportunities.


Sign in / Sign up

Export Citation Format

Share Document