scholarly journals Linear Satisfiability Preserving Assignments

2018 ◽  
Vol 61 ◽  
pp. 291-321
Author(s):  
Kei Kimura ◽  
Kazuhisa Makino

In this paper, we study several classes of satisfiability preserving assignments to the constraint satisfaction problem (CSP). In particular, we consider fixable, autark and satisfying assignments. Since it is in general NP-hard to find a nontrivial (i.e., nonempty) satisfiability preserving assignment, we introduce linear satisfiability preserving assignments, which are defined by polyhedral cones in an associated vector space. The vector space is obtained by the identification, introduced by Kullmann, of assignments with real vectors. We consider arbitrary polyhedral cones, where only restricted classes of cones for autark assignments are considered in the literature. We reveal that cones in certain classes are maximal as a convex subset of the set of the associated vectors, which can be regarded as extensions of Kullmann's results for autark assignments of CNFs. As algorithmic results, we present a pseudo-polynomial time algorithm that computes a linear fixable assignment for a given integer linear system, which implies the well known pseudo-polynomial solvability for integer linear systems such as two-variable-per-inequality (TVPI), Horn and q-Horn systems.


Author(s):  
Kei Kimura ◽  
Kazuhisa Makino

In this paper, we study several classes of satisfiability preserving assignments to the constraint satisfaction problem. In particular, we consider fixable, autark and satisfying assignments. Since it is in general NP-hard to find a nontrivial (i.e., nonempty) satisfiability preserving assignment, we introduce linear satisfiability preserving assignments, which are defined by polyhedral cones in an associated vector space. The vector space is obtained by the identification, introduced by Kullmann, of assignments with real vectors. We consider arbitrary polyhedral cones, where only restricted classes of cones for autark assignments are considered in the literature. We reveal that cones in certain classes are maximal as a convex subset of the set of the associated vectors, which can be regarded as extensions of Kullmann's results for autark assignments of CNFs. As algorithmic results, we present a pseudo-polynomial time algorithm that computes a linear fixable assignment for a given integer linear system, which implies the well known pseudo-polynomial solvability for integer linear systems such as two-variable-per-inequality, Horn and q-Horn systems.



2000 ◽  
Vol 3 ◽  
pp. 96-116 ◽  
Author(s):  
Catherine Greenhill

AbstractThe exterior square of a multiset is a natural combinatorial construction which is related to the exterior square of a vector space. We consider multisets of elements of an abelian group. Two properties are defined which a multiset may satisfy: recognisability and involution-recognisability. A polynomial-time algorithm is described which takes an input multiset and returns either (a) a multiset which is either recognisable or involution-recognisable and whose exterior square equals the input multiset, or (b) the message that no such multiset exists. The proportion of multisets which are neither recognisable nor involution-recognisable is shown to be small when the abelian group is finite but large. Some further comments are made about the motivating case of multisets of eigenvalues of matrices.



10.37236/4419 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Catarina Carvalho ◽  
Laszlo Egri ◽  
Marcel Jackson ◽  
Todd Niven

We study digraphs preserved by a Maltsev operation: Maltsev digraphs. We show that these digraphs retract either onto a directed path or to the disjoint union of directed cycles, showing in this way that the constraint satisfaction problem for Maltsev digraphs is in logspace, L. We then generalize results from Kazda (2011) to show that a Maltsev digraph is preserved not only by a majority operation, but by a class of other operations (e.g., minority, Pixley) and obtain a $O(|V_G|^4)$-time algorithm to recognize Maltsev digraphs. We also prove analogous results for digraphs preserved by conservative Maltsev operations which we use to establish that the list homomorphism problem for Maltsev digraphs is in L. We then give a polynomial time characterisation of Maltsev digraphs admitting a conservative 2-semilattice operation. Finally, we give a simple inductive construction of directed acyclic digraphs preserved by a Maltsev operation, and relate them with series parallel digraphs. 



10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.



Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.



Author(s):  
Soheil Behnezhad ◽  
Mahsa Derakhshan ◽  
MohammadTaghi Hajiaghayi ◽  
Aleksandrs Slivkins


Sign in / Sign up

Export Citation Format

Share Document