Cover Crops and Disturbance Influence Activity-Density of Weed Seed PredatorsAmara aeneaandHarpalus pensylvanicus(Coleoptera: Carabidae)

Weed Science ◽  
2011 ◽  
Vol 59 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Meredith J. Ward ◽  
Matthew R. Ryan ◽  
William S. Curran ◽  
Mary E. Barbercheck ◽  
David A. Mortensen

The activity-density ofAmara aenea(DeGeer) andHarpalus pensylvanicus(DeGeer) (Coleoptera: Carabidae) was monitored in an experiment that compared five management treatments representing a range of disturbance frequencies, crops, and aboveground biomass production. In 2004 and 2005, three treatments comprised of multiple summer cover crops were compared to bare fallow and soybean, the latter of which used mechanical cultivation to manage weeds. In 2005 weed seed predation was assessed from June to September in two of the treatments (bare fallow and oat–pea/rye–hairy vetch). Beetle activity-density varied with treatment, time of sampling, and year. In 2004 peak activity-density ofA. aeneawas highest in the mustard/buckwheat/canola, but there was no difference inH. pensylvanicusactivity-density. In 2005 activity-density ofH. pensylvanicuswas higher in oat–pea/rye–hairy vetch than in soybean treatment. Seed predation rates were relatively consistent across treatments, averaging between 38 and 63%. In fallow and oat–pea/rye–hairy vetch,H. pensylvanicusactivity-density accounted for 29 and 33% of the variation in seed predation, respectively. Our findings suggest cover crops have a positive effect on the activity-density ofA. aeneaandH. pensylvanicusand that disturbance negatively influences their activity-density in the absence of cover crops.

2019 ◽  
Vol 2 ◽  
Author(s):  
Ezequiel González ◽  
Miroslav Seidl ◽  
Martin Štrobl ◽  
Tomáš Kadlec ◽  
Marco Ferrante ◽  
...  

Non-crop habitats can act as refuge for insects in agricultural landscapes and increase ecosystem services (ESs) in neighboring arable fields. Among the different types of non-crop habitats, field defects are temporary patches where sown plants are poorly developed and other plant species emerge. These defects can be common and large in years with extreme weather conditions. However, their relevance as habitat for beneficial insects and ESs provision is unknown. Here, we quantified two ESs (pest and weed seed predation) in field defects within oilseed rape crops and related ESs levels with the activity-density of ground beetles and temperature. In 10 fields, we used artificial caterpillars made of plasticine and seed cards of two weed species (Taraxacum sp. and Stellaria sp.) to quantify ESs in two sampling periods (spring and summer) and in three habitat types: field defects, standardly grown crop (field interiors) and crop-defect boundaries. Ground beetles were sampled using pitfall traps and classified into feeding guilds and body size classes. Insects and mammals were the main pest predators and predation increased in summer, but did not differ among habitats. Seed predation rates for both species were significantly higher in summer. Predation of Taraxacum seeds was higher at field interiors, whereas predation of Stellaria was significantly higher at field interiors and defects, compared to crop-defect boundaries. Insect predation increased with the activity-density of medium and large carnivorous carabids, whereas seed predation for both weed species was positively related to the activity-density of medium-sized herbivorous carabids. Finally, temperature was negatively linked to predation of artificial caterpillars and seeds of Taraxacum.


2019 ◽  
Vol 35 (5) ◽  
pp. 522-532 ◽  
Author(s):  
Connor Z. Youngerman ◽  
Antonio DiTommaso ◽  
John E. Losey ◽  
Matthew R. Ryan

AbstractInvertebrate seed predators (ISPs) are an important component of agroecosystems that help regulate weed populations. Previous research has shown that ISPs' seed preference depends on the plant and ISP species. Although numerous studies have quantified weed seed losses from ISPs, limited research has been conducted on the potential for ISPs to consume cover crop seeds. Cover crops are sometimes broadcast seeded, and because seeds are left on the soil surface, they are susceptible to ISPs. We hypothesized that (1) ISPs will consume cover crop seeds to the same extent as weed seeds, (2) seed preference will vary by plant and ISP species, and (3) seed consumption will be influenced by seed morphology and nutritional characteristics. We conducted seed preference trials with four common ISPs [Pennsylvania dingy ground beetle (Harpalus pensylvanicus), common black ground beetle (Pterostichus melanarius), Allard's ground cricket (Allonemobius allardi) and fall field cricket (Gryllus pennsylvanicus)] in laboratory no choice and choice feeding assays. We compared seed predation of ten commonly used cover crop species [barley (Hordeum vulgare), annual ryegrass (Lolium multiflorum), pearl millet (Pennisetum glaucum), forage radish (Raphanus sativus), cereal rye (Secale cereale), white mustard (Sinapis alba), crimson clover (Trifolium incarnatum), red clover (Trifolium pratense), triticale (×Triticosecale) and hairy vetch (Vicia villosa)] and three weed species [velvetleaf (Abutilon theophrasti), common ragweed (Ambrosia artemisiifolia) and giant foxtail (Setaria faberi)]. All four ISPs readily consumed cover crop seeds (P < 0.05), but cover crops with hard seed coats and seed hulls such as hairy vetch and barley were less preferred. Our results suggest that farmers should select cover crop species that are avoided by ISPs if they plan on broadcasting the seed, such as with aerial interseeding.


Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 828-838 ◽  
Author(s):  
Rocio van der Laat ◽  
Micheal D. K. Owen ◽  
Matt Liebman ◽  
Ramon G. Leon

Field experiments were conducted near Boone, IA, to quantify postdispersal seed predation of common lambsquarters and common waterhemp in corn (2003) and soybean (2004) managed with conventional, reduced, and zero-tillage systems. Seed predation in each tillage regime was quantified using selective exclusion treatments during July through September 2003 and June through October 2004. In addition, the activity density of ground-dwelling invertebrates was estimated with pitfall traps. Choice and no-choice feeding trials were conducted in the laboratory using the most abundant weed seed predators found in the field to determine seed preferences of the potential predator organisms. The greatest seed loss occurred during July and August. In 2003, seed predation was lower in zero tillage than in conventional and reduced tillages, but no differences in seed predation between tillage regimes were observed in 2004. Maximum seed predation for common lambsquarters was 53% in 2003 and 64% in 2004. Common waterhemp seed predation reached 80% in 2003 and 85% in 2004. The majority of seed predation was by invertebrate organisms. The most common invertebrate species captured with pitfall traps were field crickets (Gryllus pennsylvanicusDe Geer [Gryllidae, Orthoptera]) and ground beetles (Harpalus pensylvanicusBurmeister [Coleoptera, Carabidae]). In 2003, field crickets were relatively more abundant in conventional and reduced tillage than in zero-tillage plots. In 2004, field crickets were more abundant in the reduced tillage than in the other two tillage regimes. No differences were detected for ground beetles among tillage regimes (P = 0.57). Choice and no-choice feeding experiments confirmed the preferences of field crickets and ground beetles for common lambsquarters and common waterhemp seeds over the larger seeds of giant foxtail and velvetleaf. Under field conditions, the activity density of field crickets was a significant predictor of common lambsquarters (r2= 0.47) and common waterhemp (r2= 0.53) seed predation. Positive relationships were also detected between the activity density of ground beetles and common lambsquarters (r2= 0.30) and common waterhemp (r2= 0.30) seed predation. This research demonstrated that weed seed predation is an important component affecting weed seedbanks and that crop management practices that favor the activity of predators such as field crickets or ground beetles could influence weed populations. Also, the results suggested that tillage is more important in determining the number of weed seeds available on the soil surface to predators than directly affecting predator activity density.


HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1303-1308 ◽  
Author(s):  
Ann Toren Seigies ◽  
Marvin Pritts

In July 2001, a study was established in a field with a 30-year history of perennial strawberry production to examine effects on replant disorder of 12 different species of preplant cover crops, soil fumigation (methyl bromide plus chloropicrin), and fallow management. In May 2002, strawberries (`Jewel') were planted into pots containing soils with the incorporated cover crops, grown for 1 year, and then fruited. Strawberry yields in 2003 were highest in pots containing indiangrass (Sorghastrum avenaceum) and brown mustard (Brassica juncea) -incorporated soils, resulting in 32% and 28%, respectively, higher yield than plants in pots containing untreated, bare fallow soil. Yield was lowest in fumigated soil or soil incorporated with sunnhemp (Crotolaria juncea), having 19% and 10% less yield than the fallow treatment, respectively. In Aug. 1999, a complementary study was established in a field with a 7-year history of continuous perennial strawberry production to examine the effects of single species and multiple species rotations on replant disorder, bacterial populations, and fungal pathogens over 2 fruiting years. Cover crop treatments included various monocultures and sequences of perennial alfalfa (Medicago sativa), brown mustard, kale (B. oleracea `Winterbor'), sweet corn (Zea mays `Saccharata'), rye (Secale cereale), hairy vetch (Vicia villosa), marigold (Tagetes patula `Nema-gone'), oats (Avena sativa `Newdak'), and sudangrass (Sorghum bicolor × S. sudanese). These rotations were compared with the effects of fumigation using methyl bromide with chloropicrin (99:1), continuous strawberry, and bare fallow. Symptoms of replant disorder developed in the continuous strawberry plots within a few months of planting. Plants in the fumigation treatment produced greater fruit yield than all other treatments in 2003, 139% more than plants from the continuous strawberry treatment. Strawberry plants grown in the kale/sweet corn/rye treatment had consistently high yield, and both the hairy vetch/marigold/rye and the oats/sudangrass/rye treatments led to marked improvement over the continuous strawberry treatment. Plants from the brown mustard treatment also were more vigorous and productive than plants from the continuous strawberry treatment during 2002 despite having relatively low foliar biomass and a relatively high level of fungal infection on strawberry plant roots. In the field, symptoms of replant disorder were best overcome by fumigation with methyl bromide or multiple species rotations, particularly that of kale followed by sweet corn and rye. Although Rhizoctonia levels were associated with poor root health, general fungal and bacterial root infection rates were not consistently associated with the presence of visible symptoms of replant disorder nor with strawberry plant growth and productivity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Benjamin Carbonne ◽  
Sandrine Petit ◽  
Veronika Neidel ◽  
Hana Foffova ◽  
Eirini Daouti ◽  
...  

Abstract Carabids are generalist predators that contribute to the agricultural ecosystem service of seedbank regulation via weed seed predation. To facilitate adoption of this ecosystem services by farmers, knowledge of weed seed predation and the resilience of seedbank regulation with co-varying availability of alternative prey is crucial. Using assessments of the seedbank and predation on seed cards in 57 cereal fields across Europe, we demonstrate a regulatory effect on the soil seedbank, at a continental scale, by groups formed of omnivore, seed-eating (granivore + omnivore) and all species of carabids just prior to the crop-harvest. Regulation was associated with a positive relationship between the activity-density of carabids and seed predation, as measured on seed cards. We found that per capita seed consumption on the cards co-varied negatively with the biomass of alternative prey, i.e. Aphididae, Collembola and total alternative prey biomass. Our results underline the importance of weed seedbank regulation by carabids, across geographically significant scales, and indicate that the effectiveness of this biocontrol may depend on the availability of alternative prey that disrupt the weed seed predation.


2017 ◽  
Vol 32 (6) ◽  
pp. 538-551 ◽  
Author(s):  
Ariel Rivers ◽  
Christina Mullen ◽  
John Wallace ◽  
Mary Barbercheck

AbstractOrganic grain growers rely on cultural practices and biological control to regulate pests, and the implementation and timing of cultural practices can affect many characteristics of the cropping system as a habitat for natural enemies of arthropod pests. Ground beetles (Coleoptera: Carabidae) in particular are important insect and weed-seed predators, and are sensitive to crop rotations, tillage and environmental complexity. In a reduced tillage system in transition to organic management, we evaluated the effect of cover crop species and termination date, crop rotation and high residue cultivation on ground and tiger beetle (Coleoptera: Carabidae) activity-density, community composition and size and trophic groups. The 3-year experiment included a sequence of corn (Zea maysL.), soybean (Glycine max(L.) Merr.) and winter wheat (Triticum aestivumL.). A mixture of hairy vetch (Vicia villosaRoth) and triticale (xTriticosecaleWittmack) preceded corn, and cereal rye (Secale cerealeL.) preceded soybean, and each crop sequence was present in each year (full-entry). We compared three cover crop termination (and cash crop planting) dates by terminating the overwintered cover crops with a roller-crimper, and immediately or soon after, we no-till planted corn and soybean through the mat created by the rolled cover crops. In the corn and soybean phases of the rotation, we also compared inter-row cultivation as a pest management strategy to a control treatment (no inter-row cultivation in corn, and an alternative row-spacing in soybean). Wheat was planted on a single date in each year into tilled soil. Carabids were sampled using pitfall traps 2 weeks after termination of the two cover crop treatments, and in mid-June in wheat. Carabid activity-density and species richness increased across the experimental site during the 3-year transition, and community evenness across the experimental site increased by the third year. Crop species influenced carabid community composition, and by the third year, the carabid community was comparable between wheat and hairy vetch-triticale cover crop. The late cover crop termination date was positively associated with higher activity-densities of large carabids in rolled hairy vetch-triticale and rolled cereal rye; carnivorous beetles in rolled hairy vetch-triticale; and granivorous beetles in rolled cereal rye. Inter-row cultivation occurring in corn and soybean resulted in a significantly higher proportion of small beetles in the wheat phase of the rotation, with a significantly higher proportion of large beetles in wheat treatments, which had not received inter-row cultivation in corn and soybean. Results have strong implications for management during the transition to organic, including the importance of plant residue, reduced tillage and timing of cover crop termination dates for augmenting carabid populations.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Sharavari S. Kulkarni ◽  
Lloyd M. Dosdall ◽  
John R. Spence ◽  
Christian J. Willenborg

We used laboratory and field feeding trials to investigate adult carabid beetle preferences for three brassicaceous weed species (rapeseed, wild mustard, and field pennycress) that are pests in canola. All carabid species preferred seeds of rapeseed most and those of field pennycress least and showed intermediate preference for wild mustard seeds. Beetles highly preferred imbibed seeds of all three weed species. Activity–density of carabids and mean weed seed removal were highly correlated in field plots of canola, with activity–density accounting for 67% of the observed variation in seed removal. Our study indicates that seed consumption among carabids is influenced by several factors, including weed species, physiological state of seeds, and carabid activity–density. Carabid seed predation is significant in canola agroecosystems; therefore, understanding these influences has implications for ecological weed management.


2021 ◽  
Vol 41 (4) ◽  
Author(s):  
Carolina Rodriguez ◽  
Linda-Maria Dimitrova Mårtensson ◽  
Erik Steen Jensen ◽  
Georg Carlsson

AbstractDiversifying cropping systems by increasing the number of cash and cover crops in crop rotation plays an important role in improving resource use efficiency and in promoting synergy between ecosystem processes. The objective of this study was to understand how the combination of crop diversification practices influences the performance of arable crop sequences in terms of crop grain yield, crop and weed biomass, and nitrogen acquisition in a temperate climate. Two field experiments were carried out. The first was a 3-year crop sequence with cereal or grain legume as the first crops, with and without undersown forage legumes and forage legume-grass crops, followed by a cereal crop. The second experiment was a 2-year crop sequence with cereal or legume as the first crops, a legume cover crop, and a subsequent cereal crop. For the first time, crop diversification practices were combined to identify plant-plant interactions in spatial and temporal scales. The results partly confirm the positive effect of diversifying cereal-based cropping systems by including grain legumes and cover crops in the crop sequence. Legume cover crops had a positive effect on subsequent cereal grain yield in one of the experiments. Using faba beans as the first crop in the crop sequence had both a positive and no effect on crop biomass and N acquisition of the subsequent cereal. In cover crops composed of a forage legume-grass mixture, the grass biomass and N acquisition were consistently increased after the grain legume, compared to the cereal-preceding crop. However, differences in the proportion of legume to grass in mixture did not influence crop yield or N acquisition in the subsequent cereal. In conclusion, these results support that increased crop diversity across spatial and temporal scales can contribute to resource-efficient production and enhance the delivery of services, contributing to more sustainable cropping systems.


Sign in / Sign up

Export Citation Format

Share Document