NEW IMAGINARY-VALUED SIMILARITY SOLUTIONS FOR LAMINAR BOUNDARY LAYERS WITH A SPRAY

2009 ◽  
Vol 19 (12) ◽  
pp. 1105-1111
Author(s):  
Ro'ee Z. Orland ◽  
David Katoshevski ◽  
D. M. Broday
1969 ◽  
Vol 91 (3) ◽  
pp. 353-358 ◽  
Author(s):  
W. A. Gustafson ◽  
I. Pelech

The two-dimensional, incompressible laminar boundary layer on a strongly curved wall in a converging channel is investigated for the special case of potential velocity inversely proportional to the distance along the wall. Similarity solutions of the momentum equation are obtained by two different methods and the differences between the methods are discussed. The numerical results show that displacement and momentum thickness increase linearly with curvature while skin friction decreases linearly.


1967 ◽  
Vol 29 (1) ◽  
pp. 187-199 ◽  
Author(s):  
Roddam Narasimha ◽  
S. K. Ojha

We consider here the higher order effect of moderate longitudinal surface curvature on steady, two-dimensional, incompressible laminar boundary layers. The basic partial differential equations for the problem, derived by the method of matched asymptotic expansions, are found to possess similarity solutions for a family of surface curvatures and pressure gradients. The similarity equations obtained by this anaylsis have been solved numerically on a computer, and show a definite decrease in skin friction when the surface has convex curvature in all cases including zero pressure gradient. Typical velocity profiles and some relevant boundary-layer characteristics are tabulated, and a critical comparison with previous work is given.


1982 ◽  
Author(s):  
Xixing Du ◽  
W. S. Liu ◽  
I. I. Glass

1954 ◽  
Vol 5 (1) ◽  
pp. 25-38 ◽  
Author(s):  
K. E. G. Wieghardt

SummaryA simple one parametric method, due to A. Walz and based on the momentum and energy equations, for calculating approximately laminar boundary layers is extended to cover axi-symmetric flow as well as plane flow. The necessary computing work is reduced a little.Another known method which requires still less computing work is also extended for axi-symmetric flow and, with the amendment of a numerical constant, proves adequate for practical purposes.


New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.


1997 ◽  
Vol 336 ◽  
pp. 379-409 ◽  
Author(s):  
PEDRO L. GARCÍA-YBARRA ◽  
JOSE L. CASTILLO

The concentration distribution of massive dilute species (e.g. aerosols, heavy vapours, etc.) carried in a gas stream in non-isothermal boundary layers is studied in the large-Schmidt-number limit, Sc[Gt ]1, including the cross-mass-transport by thermal diffusion (Ludwig–Soret effect). In self-similar laminar boundary layers, the mass fraction distribution of the dilute species is governed by a second-order ordinary differential equation whose solution becomes a singular perturbation problem when Sc[Gt ]1. Depending on the sign of the temperature gradient, the solutions exhibit different qualitative behaviour. First, when the thermal diffusion transport is directed toward the wall, the boundary layer can be divided into two separated regions: an outer region characterized by the cooperation of advection and thermal diffusion and an inner region in the vicinity of the wall, where Brownian diffusion accommodates the mass fraction to the value required by the boundary condition at the wall. Secondly, when the thermal diffusion transport is directed away from the wall, thus competing with the advective transport, both effects balance each other at some intermediate value of the similarity variable and a thin intermediate diffusive layer separating two outer regions should be considered around this location. The character of the outer solutions changes sharply across this thin layer, which corresponds to a second-order regular turning point of the differential mass transport equation. In the outer zone from the inner layer down to the wall, exponentially small terms must be considered to account for the diffusive leakage of the massive species. In the inner zone, the equation is solved in terms of the Whittaker function and the whole mass fraction distribution is determined by matching with the outer solutions. The distinguished limit of Brownian diffusion with a weak thermal diffusion is also analysed and shown to match the two cases mentioned above.


Sign in / Sign up

Export Citation Format

Share Document