2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Christiana Mavroyiakoumou ◽  
Silas Alben

1984 ◽  
Vol 106 (2) ◽  
pp. 511-515 ◽  
Author(s):  
E. A. Baskharone

A three-dimensional inviscid flow analysis in the combined scroll-nozzle system of a radial inflow turbine is presented. The coupling of the two turbine components leads to a geometrically complicated, multiply-connected flow domain. Nevertheless, this coupling accounts for the mutual effects of both elements on the three-dimensional flow pattern throughout the entire system. Compressibility effects are treated for an accurate prediction of the nozzle performance. Different geometrical configurations of both the scroll passage and the nozzle region are investigated for optimum performance. The results corresponding to a sample scroll-nozzle configuration are verified by experimental measurements.


1985 ◽  
Author(s):  
T. BARBER ◽  
G. MULLER ◽  
S. RAMSAY ◽  
E. MURMAN

1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


2016 ◽  
Vol 139 ◽  
pp. 120-129 ◽  
Author(s):  
Sumedh M. Joshi ◽  
Peter J. Diamessis ◽  
Derek T. Steinmoeller ◽  
Marek Stastna ◽  
Greg N. Thomsen

This paper describes an experimental study of the drag of two- and three-dimensional bluff obstacles of various cross-stream shapes when towed through a fluid having a stable, linear density gradient with Brunt-Vaisala frequency, N . Drag measurements were made directly using a force balance, and effects of obstacle blockage ( h / D , where h and D are the obstacle height and the fluid depth, respectively) and Reynolds number were effectively eliminated. It is shown that even in cases where the downstream lee waves and propagating columnar waves are of large amplitude, the variation of drag with the parameter K ( = ND /π U ) is qualitatively close to that implied by linear theories, with drag minima existing at integral values of K . Under certain conditions large, steady, periodic variations in drag occur. Simultaneous drag measurements and video recordings of the wakes show that this unsteadiness is linked directly with time-variations in the lee and columnar wave amplitudes. It is argued that there are, therefore, situations where the inviscid flow is always unsteady even for large times; the consequent implications for atmospheric motions are discussed.


Author(s):  
M. W. Benner ◽  
S. A. Sjolander ◽  
S. H. Moustapha

This paper presents experimental results of the secondary flows from two large-scale, low-speed, linear turbine cascades for which the incidence was varied. The aerofoils for the two cascades were designed for the same inlet and outlet conditions and differed mainly in their leading-edge geometries. Detailed flow field measurements were made upstream and downstream of the cascades and static pressure distributions were measured on the blade surfaces for three different values of incidence: 0, +10 and +20 degrees. The results from this experiment indicate that the strength of the passage vortex does not continue to increase with incidence, as would be expected from inviscid flow theory. The streamwise acceleration within the aerofoil passage seems to play an important role in influencing the strength of the vortex. The most recent off-design secondary loss correlation (Moustapha et al. [1]) includes leading-edge diameter as an influential correlating parameter. The correlation predicts that the secondary losses for the aerofoil with the larger leading-edge diameter are lower at off-design incidence; however, the opposite is observed experimentally. The loss results at high positive incidence have also high-lighted some serious shortcomings with the conventional method of loss decomposition. An empirical prediction method for secondary losses has been developed and will be presented in a subsequent paper.


Sign in / Sign up

Export Citation Format

Share Document