unstructured tetrahedral meshes
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 247 ◽  
pp. 03004
Author(s):  
Evangelia Diamantopoulou ◽  
Daniele Sciannandrone

A new Discrete Ordinates transport solver for unstructured tetrahedral meshes is presented. The solver uses the Discontinuous Galërkin Finite Element Method with linear or quadratic expansion of the flux within each cell. The solution of the one-group problem is obtained with non-preconditioned fixed-point or GMRES iterations. Precision and performances of the solver are evaluated on the 3D Radiation Transport Benchmark Problems proposed by Kobayashi, showing very good agreement with the reference and good computing times in serial execution.


Author(s):  
Marcelo L. de F. Fogal ◽  
Gustavo B. Micheli ◽  
Vicente L. Scalon ◽  
Alcides Padilha

ABSTRACT This study presents a numerical and experimental comparison of two different types of radial fans used in an agricultural fertilizer spreader at a rotation of 4000 rpm. The numerical analysis was validated through experiments conducted on a test bench using a hot-wire anemometer for velocity measurements and a Pitot tube for pressure readings. A simulation of the agricultural fertilizer spreader was carried out after the experimental validation of the mathematical models of the radial fans on the test bench to evaluate the air distribution behavior along the application nozzles, which was compared to the experimental results. A turbulent mean-field was obtained using the Reynolds Averaged Navier Stokes (RANS) and the k-Epsilon turbulence model was used for two equations. The computational fluid dynamics software CFX 18.1 was used to solve the transport equations. Unstructured tetrahedral meshes generated by the ICEM CFD 18.1 software were used in all models. The applied method is adequate and able to reproduce the fluid-dynamic behavior of airflow in pneumatic systems of agricultural fertilizer spreaders, avoiding the need for prototypes.


Author(s):  
Daniel da Silva Tonon ◽  
Jesuíno Takachi Tomita ◽  
Ezio Castejon Garcia ◽  
Cleverson Bringhenti ◽  
Rubén Bruno Díaz ◽  
...  

Abstract The aim of this work is the evaluation of different mesh types applied in turbomachines area, in this case in an axial turbine stage used in turbopumps (TP) applications. The tip clearance region was considered in this study because it has high influence in turbomachines performance. Due to the complexity of the tip clearance region, structured mesh generation is not always feasible, therefore it is necessary to generate unstructured meshes that allow flow calculation through Computational Fluid Dynamics (CFD) techniques. The use of different mesh type is an interesting topic when different rotor tip geometries are evaluated, in which the desensitization methods are applied. In this work, only the common flat-tip was consider. Thus, as a first step, unstructured tetrahedral meshes (with prismatic layers close to the surfaces) with different y+ values were generated. After this, turbulent 3-D flow calculations were performed at design and off design conditions, based con Reynolds Averaged Navier-Stokes (RANS) equations. The methodology used is to present in a didactic way, for under and graduate students, the advantages and disadvantages of the unstructured mesh in relation to the structured one, already used in previous research. Unstructured meshes were generated using ICEM software (ANSYS), while structured ones were generated using AxCent software developed by CONCEPTS NREC. The machine under study is the first stage of the hydraulic axial turbine used in the Low Pressure Oxidizer Turbopump (LPOTP) of the Space Shuttle Main Engine (SSME), considering 3.0% tip clearance configuration relative to blade height. All simulations were done using CFX program (ANSYS). The result shows the comparison between the two mesh types considering the difficulty and time generation, discretization quality, effect of y+ parameter variation on flowfield, simulation time, and stage performance parameters calculation for different operating points.


2020 ◽  
Vol 18 (01) ◽  
pp. 2050027
Author(s):  
Bassou Khouya ◽  
Mofdi El-Amrani ◽  
Mohammed Seaid

Slope limiters have been widely used to eliminate nonphysical oscillations near discontinuities generated by finite volume methods for hyperbolic systems of conservation laws. In this study, we investigate the performance of these limiters as applied to three-dimensional modified method of characteristics on unstructured tetrahedral meshes. The focus is on the construction of monotonicity-preserving modified method of characteristics for three-dimensional transport problems with discontinuities and steep gradients in their solutions. The proposed method is based on combining the modified method of characteristics with a finite element discretization of the convection equations using unstructured grids. Slope limiters are incorporated in the method to reconstruct a monotone and essentially nonoscillatory solver for three-dimensional problems at minor additional cost. The main idea consists in combining linear and quadratic interpolation procedures using nodes of the element where departure points are localized. We examine the performance of the proposed method for a class of three-dimensional transport equations with known analytical solutions. We also present numerical results for a transport problem in three-dimensional pipeline flows. In considered test problems, the proposed method demonstrates its ability to accurately capture the three-dimensional transport features without nonphysical oscillations.


2019 ◽  
Vol 24 (2) ◽  
pp. 641-661
Author(s):  
Zhao Zhang ◽  
Sebastian Geiger ◽  
Margaret Rood ◽  
Carl Jacquemyn ◽  
Matthew Jackson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document