scholarly journals SOLUTIONS FOR MHD NATURAL CONVECTION FLOW OF A PARTICULATE SUSPENSION THROUGH A VERTICAL CHANNEL WITH ASYMMETRIC THERMAL BOUNDARY CONDITIONS

2013 ◽  
Vol 44 (2) ◽  
pp. 215-243 ◽  
Author(s):  
Ali J. Chamkha ◽  
Seham S. Al-Rashidi
2018 ◽  
Vol 14 (5) ◽  
pp. 1064-1081
Author(s):  
Basant Kumar Jha ◽  
Michael O. Oni

PurposeThe purpose of this paper is to investigate the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.Design/methodology/approachAnalytical solution in terms of Bessel’s function and modified Bessel’s function of order 0 and 1 is obtained for velocity, temperature, Nusselt number, skin friction and mass flow rate.FindingsIt is established that the role of Knudsen number and fluid–wall interaction parameter is to decrease fluid temperature, velocity, Nusselt number and skin friction.Research limitations/implicationsNo laboratory practical or experiment was conducted.Practical implicationsCooling device in electronic panels, card and micro-chips is frequently cooled by natural convection.Originality/valueIn view of the amount of works done on natural convection in microchannel, it becomes interesting to investigate the effect that time-periodic heating has on natural convection flow in a vertical micro-annulus. The purpose of this paper is to examine the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.


2016 ◽  
Vol 64 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Roushanara Begum ◽  
MZI Bangalee

Effects of different boundary conditions at the surfaces of the extended computational domain on buoyancy driven natural convection flow in a three dimensional open cavity are studied numerically. This study is carried out for turbulent flow where Rayleigh number is greater than 108. Air is used as working fluid having properties at 25°C temperature and 1atm pressure. To capture the turbulent nature of the flow k - ? model is used. ANSYS CFX software is used to solve the governing equations subject to the corresponding boundary conditions. The methodology is verified through a satisfactory comparison with some published results. Average mass flow, temperature, stream line, contour velocity and velocity profile are studied at different height. An extended computational domain around the physical domain of the cavity at different surrounding conditions is considered to investigate the effect of its existence on the computation. Effects of different surrounding boundary conditions on the physical domain of the cavity are studied and reported.A relation among non-dimensional parameters such as Nusselt number, Rayleigh number, Prandlt number and Reynolds number is also reported.Dhaka Univ. J. Sci. 64(1): 31-37, 2016 (January)


Sign in / Sign up

Export Citation Format

Share Document