eccentric annuli
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 96 ◽  
pp. 104233
Author(s):  
Zakarya Belimane ◽  
Ahmed Hadjadj ◽  
Hicham Ferroudji ◽  
Mohammad Azizur Rahman ◽  
M. Fahed Qureshi
Keyword(s):  

2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110407
Author(s):  
Hosny Abou-Ziyan ◽  
Reda Ameen ◽  
Khairy Elsayed

This paper presents the results of fluid flow and convection heat transfer in concentric and eccentric annuli between two cylinders using a three-dimensional computational fluid dynamics model. Effects of rotational speed ( n = 0, 150, 300, and 400 rpm) and eccentricity (ε = 0, 0.15, 0.3, 0.45, and 0.6) on axial and tangential velocity distribution, pressure drop and forced convection heat transfer are investigated for radii ratios (η) of 0.2, 0.4, 0.6, and 0.8, Reynolds number 2.0 × 103–1.236 × 105, Taylor number 1.47 × 106–1.6 × 1010, and Prandtl number 3.71–6.94. The parameters cover many applications, including rotary heat exchangers, mixers, agitators, etc. Nusselt numbers and friction factors for stationary and rotated concentric and eccentric annuli are correlated with four dimensionless numbers. The results revealed that when the speed of the inner cylinder increases from 0 to 400 rpm, the friction factor increases by 7.7%–103% for concentric and 8.2%–148% for eccentric annuli, whereas Nusselt number enhances by 37%–333% for concentric and 44%–340% for eccentric annuli. The radius ratio has a substantial effect on the heat transfer and pressure drop in annuli. The eccentricity enhances the heat transfer up to 12%, whereas its effect on the friction factor is not monotonic as it depends on Reynolds number, radii ratios, and rotational speed.


2021 ◽  
Author(s):  
Alondra Renteria ◽  
Yee Voon Liew ◽  
Ian A. Frigaard

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1654
Author(s):  
Yasaman Foolad ◽  
Majid Bizhani ◽  
Ian A. Frigaard

This paper presents a series of experiments focused on the displacement of viscoplastic fluids by various Newtonian and non-Newtonian fluids from a long horizontal, eccentric annulus. The flow regimes range from high Reynolds number laminar regimes through to fully turbulent. These experiments represent the primary cementing operation in a horizontal well. The main objective of our experiments is to gain insight into the role of the flow regime in the fluid-fluid displacement flows of relevance to primary cementing. We study strongly eccentric annuli and displaced fluids with a significant yield stress, i.e., those scenarios where a mud channel is most likely to persist. For fully eccentric annuli, the displacements are uniformly poor, regardless of regime. This improves for an eccentricity of 0.7. However, at these large eccentricities that are typical of horizontal well cementing, the displacement is generally poor and involves a rapid “breakthrough” advance along the wide upper side of the annulus followed only by a much slower removal of the residual fluids. This dynamic renders contact time estimates meaningless. We conclude that some of the simple statements/preferences widely employed in industry do not necessarily apply for all design scenarios. Instead, a detailed study of the fluids involved and the specification of the operational constraints is needed to yield improved displacement quality.


2021 ◽  
pp. 1-18
Author(s):  
Vahid Dokhani ◽  
Yue Ma ◽  
Zili Li ◽  
Mengjiao Yu

Summary The effect of axial flow of power-law drilling fluids on frictional pressure loss under turbulent conditions in eccentric annuli is investigated. A numerical model is developed to simulate the flow of Newtonian and power-law fluids for eccentric annular geometries. A turbulent eddy-viscosity model based on the mixing-length approach is proposed, where a damping constant as a function of flow parameters is presented to account for the near-wall effects. Numerical results including the velocity profile, eddy viscosity, and friction factors are compared with various sets of experimental data for Newtonian and power-law fluids in concentric and eccentric annular configurations with diameter ratios of 0.2 to 0.8. The simulation results are also compared with a numerical study and two approximate models in the literature. The results of extensive simulation scenarios are used to obtain a novel correlation for estimation of the frictional pressure loss in eccentric annuli under turbulent conditions. Two new correlations are also presented to estimate the maximum axial velocity in the wide and narrow sections of eccentric geometries.


2020 ◽  
Vol 86 ◽  
pp. 108705
Author(s):  
Gazy F. Al-Sumaily ◽  
Hasanen M. Hussen ◽  
Wissam H. Alawee ◽  
Hayder A. Dhahad ◽  
Mark C. Thompson

2020 ◽  
Vol 193 ◽  
pp. 107368 ◽  
Author(s):  
Tran A. Tong ◽  
Mengjiao Yu ◽  
Evren Ozbayoglu ◽  
Nicholas Takach

Sign in / Sign up

Export Citation Format

Share Document