Electric Convection and Its Interaction with Convective Flows of a Different Nature

2000 ◽  
Vol 31 (6-8) ◽  
pp. 500-508
Author(s):  
A. S. Nenishev ◽  
M. O. Myznikov
Author(s):  
O.N Goncharova ◽  
◽  
I.V. Marchuk ◽  
A.V. Zakurdaeva ◽  
◽  
...  

1974 ◽  
Author(s):  
J. Y. Jaffrennou ◽  
S. A. Bories ◽  
M. A. Combarnous

Author(s):  
Rafael San Martin Moreira ◽  
Liércio Isoldi ◽  
jeferson Avila Souza ◽  
Elizaldo dos Santos

2016 ◽  
Vol 11 (2) ◽  
pp. 218-225
Author(s):  
V.S. Kuleshov

The results of a numerical modeling of thermo-gravitational convection of abnormally thermo-viscous fluid in a closed square cavity with two vertical adiabatic walls and two horizontal isothermal walls are presented. A model Newtonian liquid for which the dependence of viscosity on temperature is described by a bell function (Gaussian curve) is considered. The natural convection of inhomogeneous liquid is described by the closed mathematical model based on the continuous mechanics equations written in Oberbeck-Boussinesq approximation, where the fluid density is a linear function of temperature. To simulate the fluid flow dynamics, the modified computer code based on the implicit finite volume method and SIMPLE-type algorithm with the second-order temporal accuracy is realized using multiprocessor technology. The effect of the viscosity abnormality on stationary modes of convective flows are studied, the integral heat transfer coefficients in a flat cell are calculated.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3078
Author(s):  
Carlo Cintolesi ◽  
Francesco Barbano ◽  
Silvana Di Sabatino

Thermal convective flows are common phenomena in real urban canyons and strongly affect the mechanisms of pollutant removal from the canyon. The present contribution aims at investigating the complex interaction between inertial and thermal forces within the canyon, including the impacts on turbulent features and pollutant removal mechanisms. Large-eddy simulations reproduce infinitely long square canyons having isothermal and differently heated facades. A scalar source on the street mimics the pollutant released by traffic. The presence of heated facades triggers convective flows which generate an interaction region around the canyon-ambient interface, characterised by highly energetic turbulent fluxes and an increase of momentum and mass exchange. The presence of this region of high mixing facilitates the pollutant removal across the interface and decreases the urban canopy drag. The heating-up of upwind facade determines favourable convection that strengthens the primary internal vortex and decreases the pollutant concentration of the whole canyon by 49% compare to the isothermal case. The heating-up of the downwind facade produces adverse convection counteracting the wind-induced motion. Consequently, the primary vortex is less energetic and confined in the upper-canyon area, while a region of almost zero velocity and high pollution concentration (40% more than the isothermal case) appears at the pedestrian level. Finally, numerical analyses allow a definition of a local Richardson number based on in-canyon quantities only and a new formulation is proposed to characterise the thermo-dynamics regimes.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
A. Caroli ◽  
F. Giannattasio ◽  
M. Fanfoni ◽  
D. Del Moro ◽  
G. Consolini ◽  
...  

The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index ${\it\gamma}$. We found ${\it\gamma}=1.34\pm 0.02$ for times up to ${\sim}2000~\text{s}$ and ${\it\gamma}=1.20\pm 0.05$ for times up to ${\sim}10\,000~\text{s}$. An alternative way to investigate the advective–diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than ${\sim}2000~\text{s}$ the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion–advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.


Sign in / Sign up

Export Citation Format

Share Document