scholarly journals THREE-DIMENSIONAL NUMERICAL SIMULATION OF THE INTERACTION BETWEEN NATURAL CONVECTION AND RADIATION IN A DIFFERENTIALLY HEATED CAVITY IN THE LOW MACH NUMBER APPROXIMATION

Author(s):  
Gilles Scarella ◽  
Gilbert Accary ◽  
Sofiane Meradji ◽  
Dominique Morvan ◽  
O. A. Bessonov
1997 ◽  
Author(s):  
Daniel Tweedt ◽  
Rodrick Chima ◽  
Eli Turkel ◽  
Daniel Tweedt ◽  
Rodrick Chima ◽  
...  

2021 ◽  
Vol 932 ◽  
Author(s):  
Prateek Jaiswal ◽  
Yann Pasco ◽  
Gyuzel Yakhina ◽  
Stéphane Moreau

This paper presents an experimental investigation of aerofoil tones emitted by a controlled-diffusion aerofoil at low Mach number ( $0.05$ ), moderate Reynolds number based on the chord length ( $1.4 \times 10^{5}$ ) and moderate incidence ( $5^{\circ }$ angle of attack). Wall-pressure measurements have been performed along the suction side of the aerofoil to reveal the acoustic source mechanisms. In particular, a feedback loop is found to extend from the aerofoil trailing edge to the regions near the leading edge where the flow encounters a mean favourable pressure gradient, and consists of acoustic disturbances travelling upstream. Simultaneous wall-pressure, velocity and far-field acoustic measurements have been performed to identify the boundary-layer instability responsible for tonal noise generation. Causality correlation between far-field acoustic pressure and wall-normal velocity fluctuations has been performed, which reveals the presence of a Kelvin–Helmholtz-type modal shape within the velocity disturbance field. Tomographic particle image velocimetry measurements have been performed to understand the three-dimensional aspects of this flow instability. These measurements confirm the presence of large two-dimensional rollers that undergo three-dimensional breakdown just upstream of the trailing edge. Finally, modal decomposition of the flow has been carried out using proper orthogonal decomposition, which demonstrates that the normal modes are responsible for aerofoil tonal noise. The higher normal modes are found to undergo regular modulations in the spanwise direction. Based on the observed modal shape, an explanation of aerofoil tonal noise amplitude reduction is given, which has been previously reported in modular or serrated trailing-edge aerofoils.


2014 ◽  
Vol 55 (6) ◽  
pp. 1143-1154 ◽  
Author(s):  
Michael Kornhaas ◽  
Michael Schäfer ◽  
Dörte C. Sternel

2011 ◽  
Vol 201-203 ◽  
pp. 89-92 ◽  
Author(s):  
Jia Xian Zhang ◽  
Yan Na Wang ◽  
Rui Min Liu

Three-dimensional Reynolds-averaged Navier-Stokes simulations have been performed to explore the aerodynamic characteristics of ramjet projectiles. The turbulence model used is the RNG k-ε model. The numerical algorithms termed total variational diminishing (TVD) was adopted. The complex wave structures of ramjet projectiles with different architecture at different inflow Mach number were achieved by numerical simulation. The influence of inflow Mach number on aerodynamic characteristics and pressure center of ramjet projectiles were analyzed. Results show that lift coefficient and pressure center increase with the argument of inflow Mach number. Ramjet projectiles with different architecture have different drag coefficient trend.


2020 ◽  
Vol 19 (6-8) ◽  
pp. 324-346
Author(s):  
Imran Bashir ◽  
Michael Carley

Low-cost airlines have significantly increased air transport, thus an increase in aviation noise. Therefore, predicting aircraft noise is an important component for designing an aircraft to reduce its impact on environmental noise along with the cost of testing and certification. The aim of this work is to develop a three-dimensional Boundary Element Method (BEM), which can predict the sound propagation and scattering over metamaterials and metasurfaces in mean flow. A methodology for the implementation of metamaterials and metasurfaces in BEM as an impedance patch is presented here. A three-dimensional BEM named as BEM3D has been developed to solve the aero-acoustics problems, which incorporates the Fast Multipole Method to solve large scale acoustics problems, Taylor’s transformation to account for uniform and non-uniform mean flow, impedance and non-local boundary conditions for the implementation of metamaterials. To validate BEM3D, the predictions have been benchmarked against the Finite Element Method (FEM) simulations and experimental data. It has been concluded that for no flow case BEM3D gives identical acoustics potential values against benchmarked FEM (COMSOL) predictions. For Mach number of 0.1, the BEM3D and FEM (COMSOL) predictions show small differences. The difference between BEM3D and FEM (COMSOL) predictions increases further for higher Mach number of 0.2 and 0.3. The increase in difference with Mach number is because Taylor’s Transformation gives an approximate solution for the boundary integral equation. Nevertheless, it has been concluded that Taylor’s transformation gives reasonable predictions for low Mach number of up to 0.3. BEM3D predictions have been validated against experimental data on a flat plate and a duct. Very good agreement has been found between the measured data and BEM3D predictions for sound propagation without and with the mean flow at low Mach number.


Sign in / Sign up

Export Citation Format

Share Document