Experimental investigation of aerofoil tonal noise at low Mach number

2021 ◽  
Vol 932 ◽  
Author(s):  
Prateek Jaiswal ◽  
Yann Pasco ◽  
Gyuzel Yakhina ◽  
Stéphane Moreau

This paper presents an experimental investigation of aerofoil tones emitted by a controlled-diffusion aerofoil at low Mach number ( $0.05$ ), moderate Reynolds number based on the chord length ( $1.4 \times 10^{5}$ ) and moderate incidence ( $5^{\circ }$ angle of attack). Wall-pressure measurements have been performed along the suction side of the aerofoil to reveal the acoustic source mechanisms. In particular, a feedback loop is found to extend from the aerofoil trailing edge to the regions near the leading edge where the flow encounters a mean favourable pressure gradient, and consists of acoustic disturbances travelling upstream. Simultaneous wall-pressure, velocity and far-field acoustic measurements have been performed to identify the boundary-layer instability responsible for tonal noise generation. Causality correlation between far-field acoustic pressure and wall-normal velocity fluctuations has been performed, which reveals the presence of a Kelvin–Helmholtz-type modal shape within the velocity disturbance field. Tomographic particle image velocimetry measurements have been performed to understand the three-dimensional aspects of this flow instability. These measurements confirm the presence of large two-dimensional rollers that undergo three-dimensional breakdown just upstream of the trailing edge. Finally, modal decomposition of the flow has been carried out using proper orthogonal decomposition, which demonstrates that the normal modes are responsible for aerofoil tonal noise. The higher normal modes are found to undergo regular modulations in the spanwise direction. Based on the observed modal shape, an explanation of aerofoil tonal noise amplitude reduction is given, which has been previously reported in modular or serrated trailing-edge aerofoils.

2005 ◽  
Vol 4 (1-2) ◽  
pp. 69-91 ◽  
Author(s):  
R. Ewert ◽  
J.W. Delfs ◽  
M. Lummer

The capability of three different perturbation approaches to tackle airframe noise problems is studied. The three approaches represent different levels of complexity and are applied to trailing edge noise problems. In the Euler-perturbation approach the linearized Euler equations without sources are used as governing acoustic equations. The sound generation and propagation is studied for several trailing edge shapes (blunt, sharp, and round trailing edges) by injecting upstream of the trailing edge test vortices into the mean-flow field. The efficiency to generate noise is determined for the trailing edge shapes by comparing the different generated sound intensities due to an initial standard vortex. Mach number scaling laws are determined varying the mean-flow Mach number. In the second simulation approach an extended acoustic analogy based on acoustic perturbation equations (APEs) is applied to simulate trailing edge noise of a flat plate. The acoustic source terms are computed from a synthetic turbulent velocity model. Furthermore, the far field is computed via additional Kirchhoff extrapolation. In the third approach the sources of the extended acoustic analogy are computed from a Large Eddy Simulation (LES) of the compressible flow problem. The directivities due to a modeled and a LES based source, respectively, compare qualitatively well in the near field. In the far field the asymptotic directivities from the Kirchhoff extrapolation agree very well with the analytical solution of Howe. Furthermore, the sound pressure spectra can be shown to have similar shape and magnitude for the last two approaches.


2020 ◽  
Vol 19 (6-8) ◽  
pp. 324-346
Author(s):  
Imran Bashir ◽  
Michael Carley

Low-cost airlines have significantly increased air transport, thus an increase in aviation noise. Therefore, predicting aircraft noise is an important component for designing an aircraft to reduce its impact on environmental noise along with the cost of testing and certification. The aim of this work is to develop a three-dimensional Boundary Element Method (BEM), which can predict the sound propagation and scattering over metamaterials and metasurfaces in mean flow. A methodology for the implementation of metamaterials and metasurfaces in BEM as an impedance patch is presented here. A three-dimensional BEM named as BEM3D has been developed to solve the aero-acoustics problems, which incorporates the Fast Multipole Method to solve large scale acoustics problems, Taylor’s transformation to account for uniform and non-uniform mean flow, impedance and non-local boundary conditions for the implementation of metamaterials. To validate BEM3D, the predictions have been benchmarked against the Finite Element Method (FEM) simulations and experimental data. It has been concluded that for no flow case BEM3D gives identical acoustics potential values against benchmarked FEM (COMSOL) predictions. For Mach number of 0.1, the BEM3D and FEM (COMSOL) predictions show small differences. The difference between BEM3D and FEM (COMSOL) predictions increases further for higher Mach number of 0.2 and 0.3. The increase in difference with Mach number is because Taylor’s Transformation gives an approximate solution for the boundary integral equation. Nevertheless, it has been concluded that Taylor’s transformation gives reasonable predictions for low Mach number of up to 0.3. BEM3D predictions have been validated against experimental data on a flat plate and a duct. Very good agreement has been found between the measured data and BEM3D predictions for sound propagation without and with the mean flow at low Mach number.


Author(s):  
Miguel Pestana ◽  
Antonio Pereira ◽  
Edouard Salze ◽  
Johan Thisse ◽  
Marlene Sanjose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document