Numerical investigation for flow and heat transfer in longitudinal-flow tube bundle of shell-and-tube heat exchanger

Author(s):  
ZhiChun Liu ◽  
Wei Liu ◽  
Y.S. Wang ◽  
S.Y. Huang
2014 ◽  
Vol 68 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Mica Vukic ◽  
Mladen Tomic ◽  
Predrag Zivkovic ◽  
Gradimir Ilic

In this paper, the results of the experimental investigations of fluid flow and heat transfer in laboratory experimental shell-and-tube heat exchanger are presented. Shell-and-tube heat exchanger is with one pass of warm water on the shell side and two passes of cool water in tube bundle. Shell-and-tube heat exchanger is with 24x2 tubes (U-tube) in triangle layout. During each experimental run, the pressure drops and the fluid temperatures on shell side, along the shell-and-tube heat exchanger (at positions defined in advance) have been measured. Special attention was made to the investigation of the segmental baffles number influence of the shell-and-tube heat exchanger effectiveness.


2014 ◽  
Vol 591 ◽  
pp. 3-6
Author(s):  
M. Raja ◽  
R. Vijayan ◽  
R. Vivekananthan ◽  
M.A. Vadivelu

In the present work, the effect of nanofluid in a shell and tube heat exchanger was studied numerically. The effects of Reynolds number, volume concentration of suspended nanoparticles on the heat transfer characteristics were investigated using CFD software. Finally, the effect of the nanofluid on Shell and tube heat exchanger performance was studied and compared to that of a conventional fluid (i.e., water).


2021 ◽  
Vol 345 ◽  
pp. 00007
Author(s):  
Jiří Frank ◽  
Michal Volf ◽  
Stefan Bajić

This article deals with numerical fluid flow and heat transfer simulations of a shell and tube heat exchanger in which cooling water is heated by hot exhaust fumes. This heat exchanger plays a major role in a cogeneration unit, since it is responsible for the effective use of residual heat. The objective of the simulations is to evaluate the effects of various design changes made to the heat exchanger and their influence on the temperature fields and thus on the overall performance and efficiency of the system. In our analysis we looked at the baffles which cause the cross-current flow of water outside the tubes and at the placement of the gas inlet, i.e., on the distribution of the mass flow rate of the exhaust fumes inside these tubes.


Sign in / Sign up

Export Citation Format

Share Document