EFFECT OF THE DISTANCE FROM THE WALL OF A BELOW-WINDOW HOT AIR FLOOR VENT ON THE CONVECTIVE HEAT TRANSFER FROM A COLD WINDOW FITTED WITH A TOP-DOWN BOTTOM-UP PLANE BLIND SYSTEM

Author(s):  
Patrick H Oosthuizen
Author(s):  
Patrick H. Oosthuizen ◽  
J. T. Paul

Top Down – Bottom Up blinds have become quite popular in recent times. However the effects of such blind systems on the convective heat transfer from the window to the surrounding room have not been extensively studied and the effect of solar irradiation of the blind on the window heat transfer has not received significant attention. The purpose of the present work was therefore to numerically investigate the effect of solar irradiation of Top Down – Bottom Up slatted blinds on this convective heat transfer. An approximate model of the window-blind system has been adopted. The solar radiation falling on the blinds is assumed to produce a uniform rate of heat generation in the blind. The Boussinesq approximation has been used. Radiant heat transfer effects have been neglected. Conditions under which laminar, transitional and turbulent flows occur have been considered. The main emphasis is on the effect of the magnitude of the irradiation and of the size of the blind openings at the top and bottom of the window on the convective heat transfer rate from the window to the room.


Author(s):  
Patrick H. Oosthuizen ◽  
Neda Mansouri

The purpose of the present work was to investigate numerically the effect of the top and/or bottom blind openings on the convective heat transfer from a window fitted with a double-layered top down-bottom up honeycomb blind system. Top down-bottom up systems that utilize so-called honeycomb (or cellular) blinds can be opened at the top and/or the bottom. When a honeycomb blind is fully closed there are two or more vertical blind portions and a series of horizontal or nearly horizontal blind portions which join the vertical portions and form a column of cells. This gives the blind system its honeycomb or cellular structure. When opening a honeycomb blind the vertical portions of the blind bend or fold allowing the overall height of the blind to decrease. A double-layered honeycomb blind is constructed with three vertical blind portions and two columns of cells. A recessed window has been considered in the present study and only the convective heat transfer from the window to the surrounding room has been investigated. The surfaces of the blind are assumed to offer no resistance to heat transfer. The commercial CFD solver ANSYS FLUENT© has been used to obtain the solution. Over the range of parameters considered in this study, both laminar and turbulent flow can occur. The k-ε turbulence model has been used in obtaining the solutions. The convective heat transfer rate from the inner surface of the window, expressed in terms of a mean Nusselt number based on the window height and the difference between the window and the air temperatures, will depend on the Rayleigh number, also based on the window height, and the difference between the window and the air temperatures, the dimensionless top and bottom blind openings, and the dimensionless window recess depth. Variations of the mean Nusselt number with Rayleigh number for various values of these other parameters have been obtained and the results used to study how these other parameters affect the window heat transfer rate.


Author(s):  
Patrick H. Oosthuizen

In summer when the air-conditioning system is in use cool air from a floor-mounted vent located beneath a window often flows over the warm window. The presence of a blind system over the window will, in general, influence the effect of the vent flow on the convective heat transfer rate from the window. The effect of a Top-Down, Bottom-Up plane blind system and a cool air vent flow on the heat transfer rate from a recessed window has therefore been numerically studied here. The actual situation considered in this study is an approximate model of real situations. The window is represented by a plane isothermal section recessed into the wall, this window section being hotter than the room air far from the window. The floor-mounted vent is assumed to be located against the wall and to have a uniform discharge velocity which is normal to the vent surface. The flow has been assumed to be two-dimensional, i.e., the effect of the window and vent width has not been considered. The flow has been assumed to be steady and situations involving both laminar and turbulent flow have been considered. The fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being dealt with using the Boussinesq approach. The governing equations have been solved using the commercial CFD code ANSYS FLUENT©, the k-epsilon turbulence model having been used. The solution has the following parameters: the Rayleigh number, the Reynolds number based on the vent discharge velocity, the dimensionless depth that the window is recessed, the Prandtl number, the dimensionless top and bottom blind opening, the dimensionless size of the air vent, and the dimensionless vent discharge temperature to undisturbed air temperature difference. Results have only been obtained for a Prandtl number of 0.74 and for fixed values of the dimensionless depth that the window is recessed, the dimensionless size of the air vent, and the dimensionless vent discharge temperature difference. The effects of the other dimensionless variables on the window Nusselt number have been numerically studied.


2012 ◽  
Vol 36 (4) ◽  
pp. 413-427 ◽  
Author(s):  
Taylor A. Oetelaar ◽  
Clifton R. Johnston

We experimentally studied natural convection processes inside terracotta flues as a part of a larger numerical study of ancient Roman baths. The air, heated in a plenum below the wall, rose through the tubes. Two clusters of thermocouples, equally spaced in the flues, measured temperatures throughout the thickness of the wall. The data from the two clusters proved to be measurably different. The resulting convective heat transfer coefficients determined using the bottom cluster, showed no dependence on the plenum temperature. The measured convective heat transfer coefficient was between 6.2 and 7.6 W/m2·°C, with an average of 7.0 W/m2·°C.


Sign in / Sign up

Export Citation Format

Share Document