EFFECTS OF TEMPERATURE AND CONCENTRATION FLUCTUATIONS IN TURBULENT GAS FLOWS ON COMBINED RADIATIVE AND CONDUCTIVE WALL FLUXES

Author(s):  
F. El Ammouri ◽  
Anouar Soufiani ◽  
Jean Taine
Author(s):  
R. T. K. Baker ◽  
R. D. Sherwood

The catalytic gasification of carbon at high temperature by microscopic size metal particles is of fundamental importance to removal of coke deposits and conversion of refractory hydrocarbons into fuels and chemicals. The reaction of metal/carbon/gas systems can be observed by controlled atmosphere electron microscopy (CAEM) in an 100 KV conventional transmission microscope. In the JEOL gas reaction stage model AGl (Fig. 1) the specimen is positioned over a hole, 200μm diameter, in a platinum heater strip, and is interposed between two apertures, 75μm diameter. The control gas flows across the specimen and exits through these apertures into the specimen chamber. The gas is further confined by two apertures, one in the condenser and one in the objective lens pole pieces, and removed by an auxiliary vacuum pump. The reaction zone is <1 mm thick and is maintained at gas pressure up to 400 Torr and temperature up to 1300<C as measured by a Pt-Pt/Rh 13% thermocouple. Reaction events are observed and recorded on videotape by using a Philips phosphor-television camera located below a hole in the center of the viewing screen. The overall resolution is greater than 2.5 nm.


2014 ◽  
Vol 514 ◽  
pp. 217-229 ◽  
Author(s):  
HY Wang ◽  
LW Botsford ◽  
JW White ◽  
MJ Fogarty ◽  
F Juanes ◽  
...  

2020 ◽  
Vol 639 ◽  
pp. 185-197 ◽  
Author(s):  
MJ Malick ◽  
ME Hunsicker ◽  
MA Haltuch ◽  
SL Parker-Stetter ◽  
AM Berger ◽  
...  

Environmental conditions can have spatially complex effects on the dynamics of marine fish stocks that change across life-history stages. Yet the potential for non-stationary environmental effects across multiple dimensions, e.g. space and ontogeny, are rarely considered. In this study, we examined the evidence for spatial and ontogenetic non-stationary temperature effects on Pacific hake Merluccius productus biomass along the west coast of North America. Specifically, we used Bayesian additive models to estimate the effects of temperature on Pacific hake biomass distribution and whether the effects change across space or life-history stage. We found latitudinal differences in the effects of temperature on mature Pacific hake distribution (i.e. age 3 and older); warmer than average subsurface temperatures were associated with higher biomass north of Vancouver Island, but lower biomass offshore of Washington and southern Vancouver Island. In contrast, immature Pacific hake distribution (i.e. age 2) was better explained by a nonlinear temperature effect; cooler than average temperatures were associated with higher biomass coastwide. Together, our results suggest that Pacific hake distribution is driven by interactions between age composition and environmental conditions and highlight the importance of accounting for varying environmental effects across multiple dimensions.


MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3389-3395
Author(s):  
R. González-Díaz ◽  
D. Fernández-Sánchez ◽  
P. Rosendo-Francisco ◽  
G. Sánchez-Legorreta

AbstractIn this work, the first results of the effects of temperature during the production of Se2- ions and the effect during the interaction of Cd2+ and Se2- ions in the synthesis process of CdSe nanoparticles are presented. The synthesis of CdSe was carried out by the colloidal technique, in the first one we used a temperature of 63 °C to produce Se2- ions and in the second one an interaction temperature of 49 °C. The samples were characterized using a Scanning Electron Microscope (SEM) and a Scanning Tunneling Microscope (STM). From the SEM micrographs it was possible to identify the thorns formation and irregular islands. STM micrographs reveal elliptical shapes with a regular electron cloud profile.


Sign in / Sign up

Export Citation Format

Share Document