MULTIPLE SOLUTIONS IN A NARROW HORIZONTAL AIR-FILLED ANNULUS

Author(s):  
Pierre Cadiou ◽  
Guy Lauriat ◽  
Gilles Desrayaud
Keyword(s):  
2018 ◽  
Author(s):  
Michael H. Azarian

Abstract As counterfeiting techniques and processes grow in sophistication, the methods needed to detect these parts must keep pace. This has the unfortunate effect of raising the costs associated with managing this risk. In order to ensure that the resources devoted to counterfeit detection are commensurate with the potential effects and likelihood of counterfeit part usage in a particular application, a risk based methodology has been adopted for testing of electrical, electronic, and electromechanical (EEE) parts by the SAE AS6171 set of standards. This paper provides an overview of the risk assessment methodology employed within AS6171 to determine the testing that should be utilized to manage the risk associated with the use of a part. A scenario is constructed as a case study to illustrate how multiple solutions exist to address the risk for a particular situation, and the choice of any specific test plan can be made on the basis of practical considerations, such as cost, time, or the availability of particular test equipment.


2016 ◽  
Vol 2 (2) ◽  
pp. 333
Author(s):  
Michael Johnsn Nabie ◽  
Kolawole Raheem ◽  
John Bijou Agbemaka ◽  
Rufai Sabtiwu

2021 ◽  
pp. 207-218
Author(s):  
Safia Benmansour ◽  
Atika Matallah ◽  
Mustapha Meghnafi

2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


Sign in / Sign up

Export Citation Format

Share Document