NUMERICAL STUDY ON HEAT TRANSFER CHARACTERISTICS OF HELIUM II WITH PHASE TRANSITIONS

Author(s):  
Takafumi Noda ◽  
Noboru Fujimoto ◽  
Yan F. Rao ◽  
K. Fukuda
Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


2007 ◽  
Vol 11 (4) ◽  
pp. 171-178
Author(s):  
Khalid Alammar

Using the standard k-e turbulence model, an incompressible, axisymmetric turbulent flow with a sudden expansion was simulated. Effect of Prandtl number on heat transfer characteristics downstream of the expansion was investigated. The simulation revealed circulation downstream of the expansion. A secondary circulation (corner eddy) was also predicted. Reattachment was predicted at approximately 10 step heights. Corresponding to Prandtl number of 7.0, a peak Nusselt number 13 times the fully-developed value was predicted. The ratio of peak to fully-developed Nusselt number was shown to decrease with decreasing Prandtl number. Location of maximum Nusselt number was insensitive to Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document