Development and examination of radiative heat transfer calculation method considering the narrow band non-uniformity and the coexistence of H2O and CO2

2002 ◽  
Author(s):  
Tatsuyuki Okamoto ◽  
Hisashi Momozu ◽  
Tadashi Naito ◽  
Toshimi Takagi
2021 ◽  
Author(s):  
Wenping Peng ◽  
Min Xu ◽  
Xiaoxia Ma ◽  
Xiulan Huai

Abstract Wall radiative heat transfer in inner straight fin tubes is very complex considering the coupling of heat conduction in fins and radiative heat transfer of medium with solid surfaces, influenced by a number of factors such as fin parameters, radiative pro perties and run conditions. In this study, a simplified method is used.The average radiative heat transfer between radiative medium and solid surfaces is firstly studied by simulation with fins assumed having a constant temperature. Then an approximate correlation of this radiative heat transfer coefficient is proposed using the traditional radiative heat transfer calculation method with a view coefficient, having a error within 15%. A calculation method of average wall radiative heat transfer coefficient is further proposed by fin theory with an average temperature of fin surface used to consider the varying of the temperature along the fin when the conductivity of fins is finite. Using the predicting method proposed, a method for design calculation of fins in tubes to optimize wall radiative heat transfer is also given with three dimensionless numbers of p/n, 2H/D and nt/pD defined. Three cases of are analyzed in detail based on the design calculation method. It is verified that the radiative heat transfer could be enhanced twice by introducing fins. Under the same h0, conductivity and emissivity are two important factors to choose the material for fins.The micro-fins or the special treatments on the tube wall are a best choice for the fin material having a relatively small conductivity.


Sign in / Sign up

Export Citation Format

Share Document