Comparison of Wide Band, Narrow Band, and SLW Models with HITRAN and HITEMP for Predicting Radiative Heat Transfer

Author(s):  
Annette Fisher ◽  
Sarma Rani
2001 ◽  
Vol 123 (4) ◽  
pp. 530-536 ◽  
Author(s):  
Zhixiong Guo ◽  
Shigenao Maruyama

The radiation element method by ray emission method, REM2, has been formulated to predict radiative heat transfer in three-dimensional arbitrary participating media with nongray and anisotropically scattering properties surrounded by opaque surfaces. To validate the method, benchmark comparisons were conducted against the existing several radiation methods in a rectangular three-dimensional media composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. Good agreements between the present method and the Monte Carlo method were found with several particle density variations, in which participating media of optical thin, medium, and thick were included. As a numerical example, the present method is applied to predict radiative heat transfer in a boiler model with nonisothermal combustion gas and carbon particles and diffuse surface wall. Elsasser narrow-band model as well as exponential wide-band model is adopted to consider the spectral character of CO2 and H2O gases. The distributions of heat flux and heat flux divergence in the boiler furnace are obtained. The difference of results between narrow-band and wide-band models is discussed. The effects of gas model, particle density, and anisotropic scattering are scrutinized.


2004 ◽  
Vol 126 (5) ◽  
pp. 858-861 ◽  
Author(s):  
Anquan Wang ◽  
Michael F. Modest

The importance of combined Lorentz-Doppler (or Voigt) broadening of spectral lines in high-temperature radiative heat transfer applications is investigated. Employing narrow-band transmissivities as the criterion, the critical total pressure below which, and the critical temperature above which Doppler broadening has a significant effect on the absorption coefficient is established for gaseous H2O and CO2.


1977 ◽  
Vol 99 (3) ◽  
pp. 458-465 ◽  
Author(s):  
J. D. Felske ◽  
C. L. Tien

The applicability of the Milne-Eddington absorption coefficient approximation is discussed in relation to the calculation of radiative transport involving the two distinct types of species produced in combustion systems—gases and soot particles. The approximation is found to apply well to hydrocarbon soot particles and as a result analytical closed-form solutions are derived for the radiative heat transfer inside one-dimensional slab shaped soot clouds. (The applicability of the gray approximation to soot is also discussed.) For the calculation of total band radiation from gases, however, the Milne-Eddington approximation is found to be questionable. The meaning of its assumption is discussed in light of an established Curtis-Godson wide band scaling approximation. Its usefulness for real gases is then assessed through the calculation and comparison of slab radiation by both techniques.


Sign in / Sign up

Export Citation Format

Share Document