DEVELOPMENT OF THERMAL MANAGEMENT SYSTEM OF BATTERY MODULE USING CONJUGATED PCM AND LIQUID COOLING TECHNIQUES

2018 ◽  
Author(s):  
Hengyun Zhang ◽  
Qingyu Wu ◽  
Yang Sui ◽  
Shen Xu
Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8094
Author(s):  
Bichao Lin ◽  
Jiwen Cen ◽  
Fangming Jiang

It is important for the safety and good performance of a Li-ion battery module/pack to have an efficient thermal management system. In this paper, a battery thermal management system with a two-phase refrigerant circulated by a pump was developed. A battery module consisting of 240 18650-type Li-ion batteries was fabricated based on a finned-tube heat-exchanger structure. This structural design offers the potential to reduce the weight of the battery thermal management system. The cooling performance of the battery module was experimentally studied under different charge/discharge C-rates and with different refrigerant circulation pump operation frequencies. The results demonstrated the effectiveness of the cooling system. It was found that the refrigerant-based battery thermal management system could maintain the battery module maximum temperature under 38 °C and the temperature non-uniformity within 2.5 °C for the various operation conditions considered. The experimental results with 0.5 C charging and a US06 drive cycle showed that the thermal management system could reduce the maximum temperature difference in the battery module from an initial value of 4.5 °C to 2.6 °C, and from the initial 1.3 °C to 1.1 °C, respectively. In addition, the variable pump frequency mode was found to be effective at controlling the battery module, functioning at a desirable constant temperature and at the same time minimizing the pump work consumption.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6257
Author(s):  
Chunyu Zhao ◽  
Beile Zhang ◽  
Yuanming Zheng ◽  
Shunyuan Huang ◽  
Tongtong Yan ◽  
...  

The Li-ion battery is of paramount importance to electric vehicles (EVs). Propelled by the rapid growth of the EV industry, the performance of the battery is continuously improving. However, Li-ion batteries are susceptible to the working temperature and only obtain the optimal performance within an acceptable temperature range. Therefore, a battery thermal management system (BTMS) is required to ensure EVs’ safe operation. There are various basic methods for BTMS, including forced-air cooling, liquid cooling, phase change material (PCM), heat pipe (HP), thermoelectric cooling (TEC), etc. Every method has its unique application condition and characteristic. Furthermore, based on basic BTMS, more hybrid cooling methods adopting different basic methods are being designed to meet EVs’ requirements. In this work, the hybrid BTMS, as a more reliable and environmentally friendly method for the EVs, will be compared with basic BTMS to reveal its advantages and potential. By analyzing its cost, efficiency and other aspects, the evaluation criterion and design suggestions are put forward to guide the future development of BTMS.


Author(s):  
Wei Li ◽  
Akhil Garg ◽  
Mi Xiao ◽  
Liang Gao

Abstract The power of electric vehicles (EVs) comes from lithium-ion batteries (LIBs). LIBs are sensitive to temperature. Too high and too low temperatures will affect the performance and safety of EVs. Therefore, a stable and efficient battery thermal management system (BTMS) is essential for an EV. This article has conducted a comprehensive study on liquid-cooled BTMS. Two cooling schemes are designed: the serpentine channel and the U-shaped channel. The results show that the cooling effect of two schemes is roughly the same, but the U-shaped channel can significantly decrease the pressure drop (PD) loss. The U-shaped channel is parameterized and modeled. A machine learning method called the Gaussian process (GP) model has been used to express the outputs such as temperature difference, temperature standard deviation, and pressure drop. A multi-objective optimization model is established using GP models, and the NSGA-II method is employed to drive the optimization process. The optimized scheme is compared with the initial design. The main findings are summarized as follows: the velocity of cooling water v decreases from 0.3 m/s to 0.22 m/s by 26.67%. Pressure drop decreases from 431.40 Pa to 327.11 Pa by 24.18%. The optimized solution has a significant reduction in pressure drop and helps to reduce parasitic power. The proposed method can provide a useful guideline for the liquid cooling design of large-scale battery packs.


Sign in / Sign up

Export Citation Format

Share Document