EFFECTS OF SEA-WATER FOULING ON A PLATE-FRAME HEAT EXCHANGER FOR UTILIZATION OF WASTE HEAT FROM POWER PLANT

2018 ◽  
Author(s):  
Wonkeun Baik ◽  
Jaehyok Heo ◽  
Rin Yun
Author(s):  
Robert Ryan

A 1 MW fuel cell power plant began operation at California State University, Northridge (CSUN) in January, 2007. The power plant was installed on campus to complement a Satellite Chiller Plant which is being constructed in response to increased cooling demands related to campus growth. The power plant consists of four 250 kW fuel cell units, and a waste heat recovery system which produces hot water for the campus. The waste heat recovery system was designed by CSUN’s Physical Plant Management personnel, in consultation with engineering faculty and students, to accommodate the operating conditions required by the fuel cell units as well as the thermal needs of the campus. A unique plenum system, known as a Barometric Thermal Trap, was created to mix the four fuel cell exhaust streams prior to flowing through a two stage heat exchanger unit. The two stage heat exchanger uses separate coils for recovering sensible and latent heat in the exhaust stream. The sensible heat is being used to partially supply the campus’ building hot water and space heating requirements. The latent heat is intended for use by an adjacent recreational facility at the University Student Union. This paper discusses plant performance data which was collected and analyzed over a several month period during 2008. Electrical efficiencies and Combined Heat and Power (CHP) efficiencies are presented. The data shows that CHP efficiencies have been consistently over 60%, with the potential to exceed 70% when planned improvements to the plant are completed.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Rajoo Balaji ◽  
Omar Yaakob ◽  
Faizul Amri Adnan ◽  
Koh K. K.

Using waste heat from ship’s engines is one of the methods considered for heat treatment of ballast water. For such a system harvesting the engine exhaust heat, a heat exchanger will be vital. Design optimisation of a heater employing exhaust gases of the engine as utility fluid and ballast sea water as the process fluid was achieved using Lagrangian methods, keeping the annual cost as the objective function. Costs for installation, maintenance as also costs for the utility and process fluids were considered. Heat balance data, specific fuel consumption values from a typical operational ship and current fuel costs were considered for the design. The thermodynamic and geometric designs were worked out using computer based software for comparing the designs. Costs were also computed using a different approach for all the designs. Since the amount of heat transferred was specified and the application was limited to a single process, direct cost method was used for the computation. The objective function values obtained from Lagrangian equations were compared with the values obtained from direct cost computations. From the optimal designs, choice was justified based on annual cost, optimum exit temperature of shell side fluid and optimum mass flow of tube side fluid..


2015 ◽  
Vol 789-790 ◽  
pp. 503-507 ◽  
Author(s):  
Wen Peng Hong ◽  
Hui Zhang

With the rapid development of the national economy, the use of low-temperature heat in thermal power plant boiler can not be ignored.Although low temperature economizer is widely used in low-temperature waste heat recovery of thermal power plant boiler, the problems of corrosion and fouling are very significant.New type PTFE heat exchanger filled with high thermal conductivity properties can replace the existing metal heat exchanger, fundamentally solve the problems of corrosion and fouling, meet the future development of the thermal power plant, and realize the energy recycling to maximize the benefit of energy.


2019 ◽  
Author(s):  
Sakil Hossen ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Azzam S. Salman ◽  
Titan C. Paul

2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

2017 ◽  
Vol 16 (5) ◽  
pp. 1107-1113 ◽  
Author(s):  
Andrei Burlacu ◽  
Constantin Doru Lazarescu ◽  
Adrian Alexandru Serbanoiu ◽  
Marinela Barbuta ◽  
Vasilica Ciocan ◽  
...  

Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Cupro Nickel, 30%-716 is a high strength copper-nickel-iron alloy for heat exchanger tubes in power plant feed water heaters, and also for oil refinery service. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, joining, and surface treatment. Filing Code: Cu-200. Producer or source: Anaconda American Brass Company.


Sign in / Sign up

Export Citation Format

Share Document