nickel iron alloy
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal ◽  
Yimer Mohammed Hassen

This study demonstrates the application of parametric accelerated life testing (ALT) as a procedure to identify design deficiencies and correct them in generating a reliable quantitative (RQ) specification. It includes: (1) a system BX lifetime that X% of a product population fails with a parametric ALT scheme, (2) fatigue design, (3) ALTs with alternations, and (4) judgement as to whether the design(s) secures the desired BX lifetime. A (generalized) life–stress model through the linear transport process and a sample size formulation are suggested. A pneumatic cylinder in a machine tool was used as a case study. The cylinder was failing in a flexible manufacturing system. To reproduce the failure and modify the design, a parametric ALT was performed. At the first ALT, the metal seal made of nickel-iron alloy (36% Ni) partially cracked and chipped and had a crisp metal sound. It was modified by changing the seal from a metal to a polymer (silicone rubber). At the second ALT, the piston seal leaked due to seal hardening and wear. The failure modes of the silicone seal in the laboratory tests were similar to those returned from the field. For the third ALT, the seal material was changed from silicone rubber to (thermoset) polyurethane. There were no concerns during the third ALT and the lifetime of the pneumatic cylinder was shown to have a B1 life of 10 years.


Author(s):  
F.I. Danilov ◽  
◽  
I.V. Sknar ◽  
Yu.E. Sknar ◽  
L.M. Pavlenko ◽  
...  

The kinetics of сodeposition of nickel and iron in an electrolyte based on a deep eutectic solvent (ethaline) was studied by voltammetry method. It was established that the partial voltammograms of iron ions reduction during alloy electrodeposition correspond to the region of electrode potentials, which is more than 100 mV positive in comparison with the electrodeposition potentials of pure iron. It was shown that the acceleration of iron ion electroreduction is associated with the gain in energy due to the alloy formation and a decrease in the overvoltage of iron electrodeposition during alloying. The change in the kinetics of iron electrodeposition can be explained by both a change in the mechanism of its electrodeposition in conjunction with nickel and a change in the state of the electrode surface in the potential region of the alloy formation. Comparison between the ratio of the content of the alloy components in the metal and the corresponding ions in the electrolyte showed that nickel and iron electrodeposit into the alloy in quantities that are proportional to their content in the electrolyte. Thus, electrodeposition of nickel-iron alloy from ethaline with a water content of up to 3% occurs by the so-called normal mechanism.


2021 ◽  
Vol MA2021-01 (48) ◽  
pp. 1945-1945
Author(s):  
Caio Guilherme Pereira dos Santos ◽  
Eduardo Machado ◽  
Istvan Z Kiss ◽  
Raphael Nagao

2020 ◽  
Vol 2 ◽  
Author(s):  
Anthony Cunningham ◽  
Kevin McAdam ◽  
Jesse Thissen ◽  
Helena Digard

Background: E-cigarette designs, materials, and ingredients are continually evolving, with cotton wicks and diverse coil materials emerging as the popular components of atomisers. Another recent development is the use of nicotine salts in e-liquids to replicate the form of nicotine found in cigarette smoke, which may help cigarette smokers to transition to e-cigarettes. However, scientific understanding of the impact of such innovations on e-cigarette aerosol chemistry is limited.Methods: To address these knowledge gaps, we have conducted a comparative study analyzing relevant toxicant emissions from five e-cigarettes varying in wick, atomiser coil, and benzoic acid content and two tobacco cigarettes, quantifying 97 aerosol constituents and 84 smoke compounds, respectively. Our focus was the potential for benzoic acid in e-liquids and cotton wicks to form aerosol toxicants through thermal degradation reactions, and the potential for nickel–iron alloy coils to catalyze degradation of aerosol formers. In addition, we analyzed e-cigarette emissions for 19 flavor compounds, thermal decomposition products, and e-liquid contaminants that the FDA has recently proposed adding to the established list of Harmful and Potentially Harmful Constituents (HPHCs) in tobacco products.Results: Analyses for benzene and phenol showed no evidence of the thermal decomposition of benzoic acid in the e-cigarettes tested. Measurements of cotton decomposition products, such as carbonyls, hydrocarbons, aromatics, and PAHs, further indicated that cotton wicks can be used without thermal degradation in suitable e-cigarette designs. No evidence was found for enhanced thermal decomposition of propylene glycol or glycerol by the nickel–iron coil. Sixteen of the 19 FDA-proposed compounds were not detected in the e-cigarettes. Comparing toxicant emissions from e-cigarettes and tobacco cigarettes showed that levels of the nine WHO TobReg priority cigarette smoke toxicants were more than 99% lower in the aerosols from each of five e-cigarettes as compared with the commercial and reference cigarettes.Conclusions: Despite continuing evolution in design, components and ingredients, e-cigarettes continue to offer significantly lower toxicant exposure alternatives to cigarette smoking.


2020 ◽  
Vol 993 ◽  
pp. 820-825
Author(s):  
Jun Feng Luo ◽  
Yun Yi Fang ◽  
Guo Jin Xu ◽  
Yong Jun Li ◽  
Xiao Dong Xiong

The preparation methods of high performance ferromagnetic sputtering targets (including cobalt, nickel-platinum and nickel-iron alloy) for advanced semiconductor manufacturing were introduced. The properties of sputtering target, such as pass-through-flux (PTF), and grain size which affect the sputtering performance were well controlled by proper fabrication technique. The key factors that affect sputtering performance were also discussed.


Sign in / Sign up

Export Citation Format

Share Document