HEAT STORAGE ANALYSIS OF ENERGY PILES WITH SPIRAL-TUBE HEAT EXCHANGER BASED ON A PRACTICAL AXISYMMETRIC MODEL

2018 ◽  
Author(s):  
Qiang Zhao ◽  
Baoming Chen ◽  
Maocheng Tian ◽  
Fang Liu
2017 ◽  
Vol 125 ◽  
pp. 1280-1290 ◽  
Author(s):  
Qiang Zhao ◽  
Fang Liu ◽  
Chunwei Liu ◽  
Maocheng Tian ◽  
Baoming Chen

2021 ◽  
Vol 13 (5) ◽  
pp. 2685
Author(s):  
Mohammad Ghalambaz ◽  
Jasim M. Mahdi ◽  
Amirhossein Shafaghat ◽  
Amir Hossein Eisapour ◽  
Obai Younis ◽  
...  

This study aims to assess the effect of adding twisted fins in a triple-tube heat exchanger used for latent heat storage compared with using straight fins and no fins. In the proposed heat exchanger, phase change material (PCM) is placed between the middle annulus while hot water is passed in the inner tube and outer annulus in a counter-current direction, as a superior method to melt the PCM and store the thermal energy. The behavior of the system was assessed regarding the liquid fraction and temperature distributions as well as charging time and energy storage rate. The results indicate the advantages of adding twisted fins compared with those of using straight fins. The effect of several twisted fins was also studied to discover its effectiveness on the melting rate. The results demonstrate that deployment of four twisted fins reduced the melting time by 18% compared with using the same number of straight fins, and 25% compared with the no-fins case considering a similar PCM mass. Moreover, the melting time for the case of using four straight fins was 8.3% lower than that compared with the no-fins case. By raising the fins’ number from two to four and six, the heat storage rate rose 14.2% and 25.4%, respectively. This study presents the effects of novel configurations of fins in PCM-based thermal energy storage to deliver innovative products toward commercialization, which can be manufactured with additive manufacturing.


2018 ◽  
Vol 20 ◽  
pp. 551-559 ◽  
Author(s):  
A. Stamatiou ◽  
S. Maranda ◽  
F. Eckl ◽  
P. Schuetz ◽  
L. Fischer ◽  
...  

1993 ◽  
Vol 115 (4) ◽  
pp. 240-243 ◽  
Author(s):  
Ch. Charach

This communication extends the thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger, developed recently, to the complete heat storage-removal cycle. Conditions for the cyclic operation of this system are formulated within the quasi-steady approximation for the axisymmetric two-dimensional conduction-controlled phase change. Explicit expressions for the overall number of entropy generation units that account for heat transfer and pressure drop irreversibilities are derived. Optimization of this figure of merit with respect to the freezing point of the phase-change material and with respect to the number of heat transfer units is analyzed. When the frictional irreversibilities of the heat removal stage are negligible, the results of these studies are in agreement with those developed recently by De Lucia and Bejan (1991) for a one-dimensional latent heat storage system.


Author(s):  
Geunmyeun Jeong ◽  
Donghyun Kim ◽  
Donggyu Lee ◽  
Dong-Yeol Chung ◽  
Jong-Hyeon Peck ◽  
...  

2021 ◽  
Vol 165 ◽  
pp. 426-434
Author(s):  
Samah Mustafa ◽  
Mahmoud M. Taha ◽  
Ahmed A. Zatout ◽  
Gomaa H. Sedahmed ◽  
Dina A. El-Gayar

Author(s):  
M. Vivekanandan ◽  
G. Saravanan ◽  
V. Vijayan ◽  
K. Gopalakrishnan ◽  
J. Phani Krishna

1995 ◽  
Vol 117 (2) ◽  
pp. 440-446 ◽  
Author(s):  
H. Inaba ◽  
S. Morita

This paper dealt with the flow and cold heat-storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K)/water emulsion as a latent heat-storage material having a low melting point. A coiled double-tube heat exchanger was used for the cold heat-storage experiment. The pressure drop, the heat transfer coefficient, and the finishing time of cold heat storage in the coiled tube were measured as experimental parameters. It was understood that the flow behavior of the emulsion as a non-New-tonian fluid had an important role in the present cold heat storage. The useful nondi-mensional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient, and the cold heat storage time were derived in terms of modified Dean number and heat capacity ratio.


Sign in / Sign up

Export Citation Format

Share Document